MENU

/
/
Weld quality failure caused by used welded pipe machines (6)

Weld quality failure caused by used welded pipe machines (6)

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-10-13 11:30
  • Pvs:

【概要描述】When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.

Weld quality failure caused by used welded pipe machines (6)

【概要描述】When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-10-13 11:30
  • Pvs:
Detail

When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.

 

These weld quality failures will occur when the used welded pipe machines is making pipes: ① through-length lap welding. ② Periodic lap welding. ③ Open the seam. ④ Trachoma. ⑤ Peach-shaped tube. ⑥ Weld seam gnawed. ⑦Outer burr planing. ⑧ Heating. ⑨ The current is small. ⑩ Melting of induction coils and electrodes. ⑪ Fire. ⑫ "No high pressure" phenomenon. We can summarize 12 causes of weld quality failures.

 

Weld seam gnawed

There are two forms of gnawing of welds, one is crescent-shaped scratches; the other is indentation. This kind of trauma is generally relatively minor and will not affect the quality of the weld, but the surface of the pipe is not very beautiful. Lap welds are formed when the depression marks become indented. Pinhole-type sand holes may appear in the crescent-shaped marks produced by the rupture of the upper edge of the extrusion roller hole. Therefore, we distinguish this type of accident from other scratch accidents.

 

(1) Crescent moon marks. The crescent-shaped scratch marks are one of the main scars on the weld, most of which are caused by the squeezing roller. Sometimes the vertical roller that forms a closed hole pattern will also cause scratches, mainly because the upper edge of the hole pattern appears. It is caused by slight cracks falling off the edge or other hard substances sticking to the edge of the hole. Especially after the extrusion roller is heated, many small cracks will be generated on the edge of the hole, and various oxidized metal impurities will be adhered, which is the cause of where the scratching problem lies. When the machine is stopped, we can use our fingers to do a touch inspection along the upper edge of the hole pattern, and repair or replace it according to the situation.

 

(2) Indentation. The indentation is mainly caused by the upper roll forming the closed hole pattern. Due to the characteristics of the hole structure, the bottom diameter of the upper roller is the most stressed. When the hardness of the roll is low, the wear of the pass is accelerated, and when the hardness of the roll is high, the bottom diameter of the pass is very prone to quenching cracks, and the cracked roll edge will cause many slight indentations to the weld. As the quench cracking problem increases and the reduction force increases, the indentation will become more serious. Therefore, it should be replaced in time when the hole type is found to be quenched and cracked.

 

Outer burr planing

Any scars that do not meet the product quality requirements formed after the outer burr is removed are called planing injuries. Although the chance of gouging is very small, it directly affects the appearance quality of the product. In order to reduce planing accidents, the cutting tools should be sharpened first, so as to improve the planing quality and save the tools. Secondly, it is necessary to ensure the stability and flexibility of the planing equipment, and to find a targeted treatment method in the event of an accident.

 

(1) Burning knife. Burning a knife is an accident that happens by accident. Generally, in production, the unit suddenly slows down and the heating temperature is extremely high, or the unit has just started to heat up before reaching the normal speed, which will make the high-temperature burr chips not easy to plan off the pipe surface and accumulate on the cutting edge. The blade burns out. This requires us to pay attention to the coordination and matching of operation actions and time in production, as well as the timely response of operations.

 

(2) The weld is uneven. The longitudinal plane of the weld seam after planing is wavy, which is called planing unevenness. If the waves are as tight as a washboard, it is usually caused by the fact that the relief angle of the cutting tool is too small or the strength of the tool bar is not enough to cause vibration. If the wave is a large wave with a long period, it generally occurs on a smaller pipe diameter. Due to its low weight, the pipe on the idler will bob up and down when planing, forming a wave shape. In addition, the instability of the tool holder will also produce a large wave jump and form a wavy planing result.

 

(3) Planing (scraping) partial. The welded seam after planing is an inclined plane, commonly known as planing (scraping) deviation (Figure 26).

 

Used welded pipe machines

 

There are two main reasons for the planing (scraping) deviation.

One is that the cutting tool is installed inclined, and this problem is relatively easy to solve.

The other is caused by the pipe turning. If it is only a slight planing deviation and does not affect the welding effect, we can adjust the planing knife a little, or control the direction of the welding seam by adjusting the angle and pressure of the guide roller.

 

(4) Plane. Sometimes we can find that a wide and flat wound is left after the burr is removed. In fact, this has nothing to do with planing, but is caused by the "peach-shaped" pipe, which causes the welding seam to form large external burrs after extrusion, so it is necessary to replace the new extrusion roller immediately. Get good weld results and weld gouging quality.

 

The above is one of the reasons for the quality failure of the welding seam when the used welded pipe machines is making pipes, such as the welding seam gnawing and the external burr gouging. The main reasons for the formation of weld gnawing are (1)Crescent moon marks. (2) Indentation. There are also the main reasons for the formation of external burr planing (1) burning knife. (2) The weld is uneven. (3) Planing (scraping) partial. (4) Plane.

关键词:

More News

The Role of Leveling Machines in Used Welding Tube Machines
The Role of Leveling Machines in Used Welding Tube Machines
The Role of Leveling Machines in Used Welding Tube Machines
Introduction
In the production process of used welding tube machines, the leveling machine (also called straightener or flattening machine) serves as a critical component that significantly impacts final product quality. This article examines in detail the functions, working principles, and importance of leveling machines in used welding tube machines, providing valuable insights for operators and purchasers of second-hand equipment.

1. Primary Functions of Leveling Machines
(1) Material Flattening
Eliminates coil set (longitudinal curvature) from steel strips

Removes crossbow (transverse curvature) in the material

Corrects edge wave and center buckle defects

(2) Surface Preparation
Removes minor surface imperfections

Creates optimal surface condition for welding

Reduces mill scale and oxidation layers

(3) Tension Control
Provides consistent material tension before forming

Prevents material slippage during processing

Maintains uniform speed through the production line

2. Working Principle
(1) Mechanical Structure
In used welding tube machines, typical levelers consist of:

5-9 precision-ground work rolls

Heavy-duty frame construction

Adjustable roll gap mechanisms

Drive motor and gear reduction system

(2) Operational Process
Coiled strip enters the leveler

Multiple bending cycles through alternating rolls
3- Progressive flattening through each roll station

Precisely straightened material exits to forming section

3. Importance in Tube Production
(1) Weld Quality Improvement
Ensures perfect edge alignment for welding

Eliminates gaps that cause weak welds

Reduces weld flash and spatter

(2) Dimensional Accuracy
Maintains consistent strip width

Prevents tube ovality issues

Ensures uniform wall thickness

(3) Equipment Protection
Reduces forming roll wear

Prevents excessive load on welder

Extends overall machine life

4. Key Components in Used Machines
When evaluating levelers in used welding tube machines, inspect:

(1) Roll Condition
Surface finish and diameter uniformity

Bearing condition and lubrication

Roll alignment and parallelism

(2) Adjustment Mechanisms
Roll gap adjustment functionality

Pressure application systems

Quick-change features for different materials

(3) Drive Systems
Motor power and condition

Gearbox operation and noise levels

Speed synchronization with main line

5. Maintenance Considerations
For levelers in used welding tube machines:

(1) Regular Maintenance
Daily roll cleaning

Weekly bearing lubrication

Monthly alignment checks

(2) Common Issues
Roll surface scoring

Bearing failures

Hydraulic system leaks

Drive chain/belt wear

(3) Upgrade Options
Adding roll polishing systems

Installing automatic gauge control

Upgrading to servo-driven adjustment

6. Material Compatibility
Levelers in used welding tube machines handle:

(1) Material Types
Cold rolled steel

Hot rolled steel

Galvanized steel

Stainless steel (with proper roll finish)

(2) Thickness Range
Typically 0.5mm to 6.0mm

Special heavy-duty models up to 12mm

(3) Width Capacity
Standard models: 150mm to 600mm

Wide models: up to 1500mm

7. Process Integration
(1) Positioning in Production Line
After uncoiler and before forming section

Often combined with edge trimming

Sometimes integrated with cleaning systems

(2) Synchronization Requirements
Speed matching with main line

Tension coordination with accumulator

Feed rate optimization

8. Cost-Benefit Analysis
For used welding tube machines:

(1) Value Contribution
Improves product quality by 30-40%

Reduces scrap rate by 15-25%

Increases production speed potential

(2) Operational Costs
Energy consumption 5-15kW typical

Spare parts availability

Labor requirements

(3) Return on Investment
Payback period typically 6-18 months

Quality improvements justify cost

Essential for precision tube production

Conclusion
The leveling machine in used welding tube machines plays a fundamental role in ensuring product quality, process stability, and equipment longevity. When purchasing or operating second-hand equipment, special attention should be paid to the condition and capabilities of the leveling system. Proper maintenance and potential upgrades of this component can significantly enhance the performance and value of used welding tube machines, making it a critical focus area for tube producers looking to optimize their operations.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
The Role of Leveling Machines in Used Welding Tube Machines
Introduction
In the production process of used welding tube machines, the leveling machine (also called straightener or flattening machine) serves as a critical component that significantly impacts final product quality. This article examines in detail the functions, working principles, and importance of leveling machines in used welding tube machines, providing valuable insights for operators and purchasers of second-hand equipment.

1. Primary Functions of Leveling Machines
(1) Material Flattening
Eliminates coil set (longitudinal curvature) from steel strips

Removes crossbow (transverse curvature) in the material

Corrects edge wave and center buckle defects

(2) Surface Preparation
Removes minor surface imperfections

Creates optimal surface condition for welding

Reduces mill scale and oxidation layers

(3) Tension Control
Provides consistent material tension before forming

Prevents material slippage during processing

Maintains uniform speed through the production line

2. Working Principle
(1) Mechanical Structure
In used welding tube machines, typical levelers consist of:

5-9 precision-ground work rolls

Heavy-duty frame construction

Adjustable roll gap mechanisms

Drive motor and gear reduction system

(2) Operational Process
Coiled strip enters the leveler

Multiple bending cycles through alternating rolls
3- Progressive flattening through each roll station

Precisely straightened material exits to forming section

3. Importance in Tube Production
(1) Weld Quality Improvement
Ensures perfect edge alignment for welding

Eliminates gaps that cause weak welds

Reduces weld flash and spatter

(2) Dimensional Accuracy
Maintains consistent strip width

Prevents tube ovality issues

Ensures uniform wall thickness

(3) Equipment Protection
Reduces forming roll wear

Prevents excessive load on welder

Extends overall machine life

4. Key Components in Used Machines
When evaluating levelers in used welding tube machines, inspect:

(1) Roll Condition
Surface finish and diameter uniformity

Bearing condition and lubrication

Roll alignment and parallelism

(2) Adjustment Mechanisms
Roll gap adjustment functionality

Pressure application systems

Quick-change features for different materials

(3) Drive Systems
Motor power and condition

Gearbox operation and noise levels

Speed synchronization with main line

5. Maintenance Considerations
For levelers in used welding tube machines:

(1) Regular Maintenance
Daily roll cleaning

Weekly bearing lubrication

Monthly alignment checks

(2) Common Issues
Roll surface scoring

Bearing failures

Hydraulic system leaks

Drive chain/belt wear

(3) Upgrade Options
Adding roll polishing systems

Installing automatic gauge control

Upgrading to servo-driven adjustment

6. Material Compatibility
Levelers in used welding tube machines handle:

(1) Material Types
Cold rolled steel

Hot rolled steel

Galvanized steel

Stainless steel (with proper roll finish)

(2) Thickness Range
Typically 0.5mm to 6.0mm

Special heavy-duty models up to 12mm

(3) Width Capacity
Standard models: 150mm to 600mm

Wide models: up to 1500mm

7. Process Integration
(1) Positioning in Production Line
After uncoiler and before forming section

Often combined with edge trimming

Sometimes integrated with cleaning systems

(2) Synchronization Requirements
Speed matching with main line

Tension coordination with accumulator

Feed rate optimization

8. Cost-Benefit Analysis
For used welding tube machines:

(1) Value Contribution
Improves product quality by 30-40%

Reduces scrap rate by 15-25%

Increases production speed potential

(2) Operational Costs
Energy consumption 5-15kW typical

Spare parts availability

Labor requirements

(3) Return on Investment
Payback period typically 6-18 months

Quality improvements justify cost

Essential for precision tube production

Conclusion
The leveling machine in used welding tube machines plays a fundamental role in ensuring product quality, process stability, and equipment longevity. When purchasing or operating second-hand equipment, special attention should be paid to the condition and capabilities of the leveling system. Proper maintenance and potential upgrades of this component can significantly enhance the performance and value of used welding tube machines, making it a critical focus area for tube producers looking to optimize their operations.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Differences Between Vertical and Horizontal Loopers in Used Welding Tube Machines
Differences Between Vertical and Horizontal Loopers in Used Welding Tube Machines
Differences Between Vertical and Horizontal Loopers in Used Welding Tube Machines
Introduction
In used welding tube machines, loopers (accumulators) play a critical role in maintaining continuous production by compensating for speed variations between uncoiling and forming processes. Understanding the differences between vertical and horizontal loopers is essential when evaluating or operating used welding tube machines. This article provides a detailed comparison of these two systems, focusing on their structural differences, operational characteristics, and suitability for various production environments.

1. Structural Design Differences
(1) Vertical Loopers
Vertical loopers in used welding tube machines feature:

Upward/Downward Material Path: Strip material moves vertically through the accumulator

Tower-Type Construction: Requires significant vertical space (typically 6-12 meters height)

Guided Roller System: Multiple rollers guide the strip through the vertical loop

Counterweight or Hydraulic Balancing: Maintains consistent tension

(2) Horizontal Loopers
Horizontal loopers in used welding tube machines are characterized by:

Side-to-Side Material Flow: Strip travels horizontally in a looped path

Compact Footprint: Requires more floor space but less height (typically 2-4 meters)

Carriage-Type Design: Moving carriage with rollers creates the accumulation loop

Motorized or Pneumatic Control: Adjusts loop position automatically

2. Operational Performance Comparison
(1) Space Requirements
Vertical Loopers: Ideal for facilities with high ceilings but limited floor space

Horizontal Loopers: Better suited for low-ceiling workshops with available floor area

(2) Material Handling
Vertical Loopers:

Better for thin, delicate materials prone to scratching

Reduced risk of material twisting

Gravity assists in maintaining tension

Horizontal Loopers:

Easier to thread during setup

Better for heavier gauge materials

Simpler visual monitoring of loop position

(3) Speed and Capacity
Vertical Loopers:

Typically allow higher line speeds (up to 120 m/min)

Larger accumulation capacity (longer loops possible)

Horizontal Loopers:

Generally limited to 60-80 m/min

Smaller maximum loop size due to space constraints

3. Maintenance Considerations for Used Equipment
When evaluating used welding tube machines, consider these maintenance factors:

(1) Vertical Looper Maintenance
More complex roller replacement (high elevation work)

Frequent inspection of counterweight cables/chains

Potential for material buildup in vertical guides

Requires specialized lifts for servicing

(2) Horizontal Looper Maintenance
Easier access to all components

More wear on carriage tracks and wheels

Simpler lubrication points

Reduced safety risks during maintenance

4. Application Suitability
(1) Best Uses for Vertical Loopers
High-speed production lines

Thin gauge materials (0.5-2.0 mm)

Facilities with height availability

Precision tube manufacturing

(2) Best Uses for Horizontal Loopers
Heavy gauge material processing

Low-to-medium speed operations

Space-constrained facilities

Entry-level or mid-range used welding tube machines

5. Cost Implications for Used Machines
(1) Vertical Looper Systems
Higher initial cost in used welding tube machines

Potentially greater maintenance expenses

May require facility modifications (height)

Longer service life if properly maintained

(2) Horizontal Looper Systems
More affordable in used welding tube machines

Lower installation costs

Easier to relocate

Generally simpler to repair

6. Conversion and Retrofitting Options
Many used welding tube machines can be modified:

(1) Vertical to Horizontal Conversions
Possible but requires significant structural changes

May need new control systems

Worth considering for space-constrained buyers

(2) Horizontal to Vertical Upgrades
Rarely practical

Usually requires complete looper replacement

Seldom cost-effective for used equipment

7. Purchasing Considerations
When selecting a used welding tube machine:

(1) Choose Vertical Loopers When:
Producing high volumes of thin-walled tubes

Operating in a tall facility

Needing maximum production speed

Processing delicate surface materials

(2) Choose Horizontal Loopers When:
Working with limited ceiling height

Handling thicker materials

Operating at moderate speeds

Seeking easier maintenance access

Conclusion
The choice between vertical and horizontal loopers in used welding tube machines depends on production requirements, facility constraints, and material characteristics. Vertical systems offer speed and capacity advantages for certain applications, while horizontal models provide space efficiency and easier maintenance. When evaluating used welding tube machines, carefully consider which looper type best matches your operational needs and facility conditions to ensure optimal performance and cost-effectiveness.

For more information, please pay attention to the website of Jinyujie Mecha
Detail
Differences Between Vertical and Horizontal Loopers in Used Welding Tube Machines
Introduction
In used welding tube machines, loopers (accumulators) play a critical role in maintaining continuous production by compensating for speed variations between uncoiling and forming processes. Understanding the differences between vertical and horizontal loopers is essential when evaluating or operating used welding tube machines. This article provides a detailed comparison of these two systems, focusing on their structural differences, operational characteristics, and suitability for various production environments.

1. Structural Design Differences
(1) Vertical Loopers
Vertical loopers in used welding tube machines feature:

Upward/Downward Material Path: Strip material moves vertically through the accumulator

Tower-Type Construction: Requires significant vertical space (typically 6-12 meters height)

Guided Roller System: Multiple rollers guide the strip through the vertical loop

Counterweight or Hydraulic Balancing: Maintains consistent tension

(2) Horizontal Loopers
Horizontal loopers in used welding tube machines are characterized by:

Side-to-Side Material Flow: Strip travels horizontally in a looped path

Compact Footprint: Requires more floor space but less height (typically 2-4 meters)

Carriage-Type Design: Moving carriage with rollers creates the accumulation loop

Motorized or Pneumatic Control: Adjusts loop position automatically

2. Operational Performance Comparison
(1) Space Requirements
Vertical Loopers: Ideal for facilities with high ceilings but limited floor space

Horizontal Loopers: Better suited for low-ceiling workshops with available floor area

(2) Material Handling
Vertical Loopers:

Better for thin, delicate materials prone to scratching

Reduced risk of material twisting

Gravity assists in maintaining tension

Horizontal Loopers:

Easier to thread during setup

Better for heavier gauge materials

Simpler visual monitoring of loop position

(3) Speed and Capacity
Vertical Loopers:

Typically allow higher line speeds (up to 120 m/min)

Larger accumulation capacity (longer loops possible)

Horizontal Loopers:

Generally limited to 60-80 m/min

Smaller maximum loop size due to space constraints

3. Maintenance Considerations for Used Equipment
When evaluating used welding tube machines, consider these maintenance factors:

(1) Vertical Looper Maintenance
More complex roller replacement (high elevation work)

Frequent inspection of counterweight cables/chains

Potential for material buildup in vertical guides

Requires specialized lifts for servicing

(2) Horizontal Looper Maintenance
Easier access to all components

More wear on carriage tracks and wheels

Simpler lubrication points

Reduced safety risks during maintenance

4. Application Suitability
(1) Best Uses for Vertical Loopers
High-speed production lines

Thin gauge materials (0.5-2.0 mm)

Facilities with height availability

Precision tube manufacturing

(2) Best Uses for Horizontal Loopers
Heavy gauge material processing

Low-to-medium speed operations

Space-constrained facilities

Entry-level or mid-range used welding tube machines

5. Cost Implications for Used Machines
(1) Vertical Looper Systems
Higher initial cost in used welding tube machines

Potentially greater maintenance expenses

May require facility modifications (height)

Longer service life if properly maintained

(2) Horizontal Looper Systems
More affordable in used welding tube machines

Lower installation costs

Easier to relocate

Generally simpler to repair

6. Conversion and Retrofitting Options
Many used welding tube machines can be modified:

(1) Vertical to Horizontal Conversions
Possible but requires significant structural changes

May need new control systems

Worth considering for space-constrained buyers

(2) Horizontal to Vertical Upgrades
Rarely practical

Usually requires complete looper replacement

Seldom cost-effective for used equipment

7. Purchasing Considerations
When selecting a used welding tube machine:

(1) Choose Vertical Loopers When:
Producing high volumes of thin-walled tubes

Operating in a tall facility

Needing maximum production speed

Processing delicate surface materials

(2) Choose Horizontal Loopers When:
Working with limited ceiling height

Handling thicker materials

Operating at moderate speeds

Seeking easier maintenance access

Conclusion
The choice between vertical and horizontal loopers in used welding tube machines depends on production requirements, facility constraints, and material characteristics. Vertical systems offer speed and capacity advantages for certain applications, while horizontal models provide space efficiency and easier maintenance. When evaluating used welding tube machines, carefully consider which looper type best matches your operational needs and facility conditions to ensure optimal performance and cost-effectiveness.

For more information, please pay attention to the website of Jinyujie Mecha
How to Evaluate the Condition of Used Welding Tube Machines
How to Evaluate the Condition of Used Welding Tube Machines
How to Evaluate the Condition of Used Welding Tube Machines
Purchasing a used welding tube machine can be a cost-effective solution for manufacturers, but thorough evaluation is crucial to ensure reliability and performance. This guide provides a comprehensive approach to assessing the condition of used welding tube machines, helping buyers make informed decisions.

1. Visual Inspection
The first step in evaluating a used welding tube machine is a detailed visual examination:

(1) Structural Integrity
Check for cracks, dents, or deformations in the machine frame

Inspect welding seams for signs of repair or fatigue

Examine guide rails and rollers for excessive wear

(2) Surface Condition
Look for rust or corrosion, especially in critical components

Check paint condition as an indicator of maintenance history

Inspect hydraulic systems for leaks or oil stains

(3) Electrical Components
Examine wiring insulation for damage or brittleness

Check control panels for burn marks or loose connections

Verify condition of switches and emergency stop buttons

2. Mechanical Assessment
A thorough mechanical evaluation helps determine the operational condition:

(1) Drive System
Test motor performance under load

Check gearboxes for unusual noises or vibrations

Inspect chain/belt drives for wear and proper tension

(2) Rolling System
Measure roller diameters for wear patterns

Check bearing conditions and lubrication

Verify alignment of forming stands

(3) Welding Head
Examine electrode condition and alignment

Check pressure mechanisms for consistency

Inspect cooling systems for proper function

3. Functional Testing
Operational tests provide the most accurate assessment:

(1) Production Trial
Run sample material through the complete process

Measure weld quality and consistency

Check dimensional accuracy of produced tubes

(2) Speed and Performance
Test machine at various production speeds

Monitor for vibrations or unusual noises

Check acceleration and deceleration smoothness

(3) Control Systems
Verify PLC/HMI functionality

Test all programmable settings

Check safety interlocks and alarms

4. Documentation Review
Proper documentation provides valuable insights:

(1) Maintenance Records
Review service history and frequency

Check for major repairs or component replacements

Verify lubrication schedules

(2) Production History
Examine total operating hours

Check typical production loads

Review any downtime records

(3) Technical Specifications
Compare current condition to original specs

Verify any modifications made

Check for available spare parts

5. Specialized Inspection Methods
Advanced evaluation techniques provide deeper insights:

(1) Non-Destructive Testing (NDT)
Ultrasonic testing for internal cracks

Magnetic particle inspection for surface defects

Dye penetrant examination of critical welds

(2) Vibration Analysis
Detect bearing and gear wear patterns

Identify imbalance issues

Predict potential failures

(3) Thermal Imaging
Locate electrical hot spots

Identify friction points

Check cooling system efficiency

6. Key Evaluation Criteria
When assessing a used welding tube machine, focus on these critical factors:

(1) Wear Indicators
Roller groove depth

Guide shoe thickness

Drive chain stretch

(2) Performance Metrics
Weld speed consistency

Energy consumption

Product dimensional tolerance

(3) Economic Considerations
Estimated remaining service life

Availability of spare parts

Potential upgrade costs

7. Professional Inspection Services
For comprehensive evaluation:

(1) Third-Party Inspectors
Independent assessment

Specialized testing equipment

Detailed reporting

(2) Manufacturer Evaluation
OEM technical support

Genuine part verification

Factory reconditioning options

(3) Certification Programs
Verified machine condition

Performance guarantees

Warranty options

Conclusion
Evaluating a used welding tube machine requires systematic inspection across multiple parameters. By combining visual checks, mechanical assessment, functional testing, and documentation review, buyers can accurately determine the machine's condition and value. Investing time in thorough evaluation helps avoid costly surprises and ensures the used welding tube machine will meet production requirements effectively.

For high-value purchases, professional inspection services provide additional assurance and help negotiate fair pricing based on actual machine condition.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
How to Evaluate the Condition of Used Welding Tube Machines
Purchasing a used welding tube machine can be a cost-effective solution for manufacturers, but thorough evaluation is crucial to ensure reliability and performance. This guide provides a comprehensive approach to assessing the condition of used welding tube machines, helping buyers make informed decisions.

1. Visual Inspection
The first step in evaluating a used welding tube machine is a detailed visual examination:

(1) Structural Integrity
Check for cracks, dents, or deformations in the machine frame

Inspect welding seams for signs of repair or fatigue

Examine guide rails and rollers for excessive wear

(2) Surface Condition
Look for rust or corrosion, especially in critical components

Check paint condition as an indicator of maintenance history

Inspect hydraulic systems for leaks or oil stains

(3) Electrical Components
Examine wiring insulation for damage or brittleness

Check control panels for burn marks or loose connections

Verify condition of switches and emergency stop buttons

2. Mechanical Assessment
A thorough mechanical evaluation helps determine the operational condition:

(1) Drive System
Test motor performance under load

Check gearboxes for unusual noises or vibrations

Inspect chain/belt drives for wear and proper tension

(2) Rolling System
Measure roller diameters for wear patterns

Check bearing conditions and lubrication

Verify alignment of forming stands

(3) Welding Head
Examine electrode condition and alignment

Check pressure mechanisms for consistency

Inspect cooling systems for proper function

3. Functional Testing
Operational tests provide the most accurate assessment:

(1) Production Trial
Run sample material through the complete process

Measure weld quality and consistency

Check dimensional accuracy of produced tubes

(2) Speed and Performance
Test machine at various production speeds

Monitor for vibrations or unusual noises

Check acceleration and deceleration smoothness

(3) Control Systems
Verify PLC/HMI functionality

Test all programmable settings

Check safety interlocks and alarms

4. Documentation Review
Proper documentation provides valuable insights:

(1) Maintenance Records
Review service history and frequency

Check for major repairs or component replacements

Verify lubrication schedules

(2) Production History
Examine total operating hours

Check typical production loads

Review any downtime records

(3) Technical Specifications
Compare current condition to original specs

Verify any modifications made

Check for available spare parts

5. Specialized Inspection Methods
Advanced evaluation techniques provide deeper insights:

(1) Non-Destructive Testing (NDT)
Ultrasonic testing for internal cracks

Magnetic particle inspection for surface defects

Dye penetrant examination of critical welds

(2) Vibration Analysis
Detect bearing and gear wear patterns

Identify imbalance issues

Predict potential failures

(3) Thermal Imaging
Locate electrical hot spots

Identify friction points

Check cooling system efficiency

6. Key Evaluation Criteria
When assessing a used welding tube machine, focus on these critical factors:

(1) Wear Indicators
Roller groove depth

Guide shoe thickness

Drive chain stretch

(2) Performance Metrics
Weld speed consistency

Energy consumption

Product dimensional tolerance

(3) Economic Considerations
Estimated remaining service life

Availability of spare parts

Potential upgrade costs

7. Professional Inspection Services
For comprehensive evaluation:

(1) Third-Party Inspectors
Independent assessment

Specialized testing equipment

Detailed reporting

(2) Manufacturer Evaluation
OEM technical support

Genuine part verification

Factory reconditioning options

(3) Certification Programs
Verified machine condition

Performance guarantees

Warranty options

Conclusion
Evaluating a used welding tube machine requires systematic inspection across multiple parameters. By combining visual checks, mechanical assessment, functional testing, and documentation review, buyers can accurately determine the machine's condition and value. Investing time in thorough evaluation helps avoid costly surprises and ensures the used welding tube machine will meet production requirements effectively.

For high-value purchases, professional inspection services provide additional assurance and help negotiate fair pricing based on actual machine condition.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Market Analysis of Used Welding Tube Machines
Market Analysis of Used Welding Tube Machines
Market Analysis of Used Welding Tube Machines
The global market for used welding tube machines has shown significant growth in recent years, driven by cost efficiency, industrial demand, and the increasing adoption of refurbished manufacturing equipment. This analysis explores the current market trends, key drivers, challenges, and future prospects for used welding tube machines, providing insights for manufacturers, traders, and investors.

1. Market Overview
The used welding tube machine market is a vital segment of the metal fabrication industry, catering to small and medium-sized enterprises (SMEs) seeking affordable production solutions. These machines are widely used in construction, automotive, oil & gas, and manufacturing sectors for producing pipes and tubes of various specifications.

Key Market Trends:
Rising Demand for Cost-Effective Solutions: With new welding tube machines requiring substantial capital investment, many manufacturers opt for used welding tube machines to reduce costs while maintaining production efficiency.

Increased Refurbishment and Resale: Companies specializing in refurbishing industrial machinery have expanded, offering upgraded used welding tube machines with improved performance and extended lifespans4.

Growth in Emerging Markets: Developing economies in Asia, Africa, and Latin America are increasingly sourcing used welding tube machines due to lower budgets and growing industrialization.

2. Market Drivers
Several factors contribute to the growing demand for used welding tube machines:

(1) Economic Advantages
Lower Initial Investment: A new high-frequency welding tube machine can cost between 100,000and100,000and500,000, whereas a used welding tube machine with similar capabilities may be available for 30-60% less4.

Reduced Depreciation Losses: Unlike new equipment, used welding tube machines have already undergone significant depreciation, making them financially viable for startups and small workshops.

(2) Sustainability and Circular Economy
Many industries are adopting sustainable practices by reusing machinery instead of purchasing new equipment, reducing electronic waste and carbon footprints.

Refurbished used welding tube machines often include modernized components, making them nearly as efficient as new models.

(3) Flexibility in Production
Used welding tube machines are available in various models (HF welding, TIG welding, ERW tube mills), allowing businesses to select machines tailored to their production needs3.

Some suppliers offer customization options, retrofitting older machines with automation features to enhance productivity.

3. Market Challenges
Despite the advantages, the used welding tube machine market faces several obstacles:

(1) Quality and Reliability Concerns
Older machines may have hidden defects, requiring additional maintenance costs.

Buyers must carefully inspect used welding tube machines for wear and tear, especially in critical components like rollers, welding heads, and electrical systems.

(2) Limited Availability of Spare Parts
Some older models may no longer have readily available replacement parts, forcing buyers to rely on aftermarket solutions or machine modifications.

(3) Competition from New Technologies
Advances in automation and Industry 4.0 are pushing manufacturers toward smart welding solutions, making some used welding tube machines less attractive for high-precision applications.

4. Regional Market Insights
(1) Asia-Pacific (China, India, Southeast Asia)
The largest market for used welding tube machines, driven by rapid industrialization and infrastructure development.

China remains a major supplier, with many manufacturers upgrading to newer models and selling older machines domestically and internationally.

(2) North America & Europe
Mature markets with steady demand for refurbished industrial equipment.

Strict environmental regulations encourage the reuse of machinery, supporting the used welding tube machine market.

(3) Africa & Latin America
Growing demand due to expanding construction and oil & gas sectors.

Limited access to new machinery makes used welding tube machines a preferred choice.

5. Future Outlook
The used welding tube machine market is expected to grow steadily, supported by:

Increasing adoption of automation upgrades (retrofitting older machines with IoT and CNC controls).

Expansion of metal fabrication industries in emerging economies.

Rising focus on sustainability, promoting the reuse of industrial equipment.

However, buyers must remain cautious, ensuring proper inspection and maintenance of used welding tube machines to maximize their operational lifespan.

Conclusion
The used welding tube machine market offers a cost-effective and sustainable alternative for manufacturers worldwide. While challenges such as maintenance and part availability persist, the economic benefits and flexibility of these machines make them a viable option for businesses looking to optimize production c
Detail
Market Analysis of Used Welding Tube Machines
The global market for used welding tube machines has shown significant growth in recent years, driven by cost efficiency, industrial demand, and the increasing adoption of refurbished manufacturing equipment. This analysis explores the current market trends, key drivers, challenges, and future prospects for used welding tube machines, providing insights for manufacturers, traders, and investors.

1. Market Overview
The used welding tube machine market is a vital segment of the metal fabrication industry, catering to small and medium-sized enterprises (SMEs) seeking affordable production solutions. These machines are widely used in construction, automotive, oil & gas, and manufacturing sectors for producing pipes and tubes of various specifications.

Key Market Trends:
Rising Demand for Cost-Effective Solutions: With new welding tube machines requiring substantial capital investment, many manufacturers opt for used welding tube machines to reduce costs while maintaining production efficiency.

Increased Refurbishment and Resale: Companies specializing in refurbishing industrial machinery have expanded, offering upgraded used welding tube machines with improved performance and extended lifespans4.

Growth in Emerging Markets: Developing economies in Asia, Africa, and Latin America are increasingly sourcing used welding tube machines due to lower budgets and growing industrialization.

2. Market Drivers
Several factors contribute to the growing demand for used welding tube machines:

(1) Economic Advantages
Lower Initial Investment: A new high-frequency welding tube machine can cost between 100,000and100,000and500,000, whereas a used welding tube machine with similar capabilities may be available for 30-60% less4.

Reduced Depreciation Losses: Unlike new equipment, used welding tube machines have already undergone significant depreciation, making them financially viable for startups and small workshops.

(2) Sustainability and Circular Economy
Many industries are adopting sustainable practices by reusing machinery instead of purchasing new equipment, reducing electronic waste and carbon footprints.

Refurbished used welding tube machines often include modernized components, making them nearly as efficient as new models.

(3) Flexibility in Production
Used welding tube machines are available in various models (HF welding, TIG welding, ERW tube mills), allowing businesses to select machines tailored to their production needs3.

Some suppliers offer customization options, retrofitting older machines with automation features to enhance productivity.

3. Market Challenges
Despite the advantages, the used welding tube machine market faces several obstacles:

(1) Quality and Reliability Concerns
Older machines may have hidden defects, requiring additional maintenance costs.

Buyers must carefully inspect used welding tube machines for wear and tear, especially in critical components like rollers, welding heads, and electrical systems.

(2) Limited Availability of Spare Parts
Some older models may no longer have readily available replacement parts, forcing buyers to rely on aftermarket solutions or machine modifications.

(3) Competition from New Technologies
Advances in automation and Industry 4.0 are pushing manufacturers toward smart welding solutions, making some used welding tube machines less attractive for high-precision applications.

4. Regional Market Insights
(1) Asia-Pacific (China, India, Southeast Asia)
The largest market for used welding tube machines, driven by rapid industrialization and infrastructure development.

China remains a major supplier, with many manufacturers upgrading to newer models and selling older machines domestically and internationally.

(2) North America & Europe
Mature markets with steady demand for refurbished industrial equipment.

Strict environmental regulations encourage the reuse of machinery, supporting the used welding tube machine market.

(3) Africa & Latin America
Growing demand due to expanding construction and oil & gas sectors.

Limited access to new machinery makes used welding tube machines a preferred choice.

5. Future Outlook
The used welding tube machine market is expected to grow steadily, supported by:

Increasing adoption of automation upgrades (retrofitting older machines with IoT and CNC controls).

Expansion of metal fabrication industries in emerging economies.

Rising focus on sustainability, promoting the reuse of industrial equipment.

However, buyers must remain cautious, ensuring proper inspection and maintenance of used welding tube machines to maximize their operational lifespan.

Conclusion
The used welding tube machine market offers a cost-effective and sustainable alternative for manufacturers worldwide. While challenges such as maintenance and part availability persist, the economic benefits and flexibility of these machines make them a viable option for businesses looking to optimize production c
Contact information
Tel: +86-13392281699
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province

Recommendation

Online Inquiry

留言应用名称:
底部留言
描述:

LINK

Contact Us

Tel (wechat): 13336487288
Wechat:+86 13336487288

WhatsApp:+86 13336487288
Email: zty@usedpipemill.com

Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province

QRCODE

Copyright 0 2021 jinyujie. 粤ICP备13051810号 Powerby:  300.cn