MENU

/
/
Weld quality failure caused by used welded pipe machines (6)

Weld quality failure caused by used welded pipe machines (6)

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-10-13 11:30
  • Pvs:

【概要描述】When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.

Weld quality failure caused by used welded pipe machines (6)

【概要描述】When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-10-13 11:30
  • Pvs:
Detail

When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.

 

These weld quality failures will occur when the used welded pipe machines is making pipes: ① through-length lap welding. ② Periodic lap welding. ③ Open the seam. ④ Trachoma. ⑤ Peach-shaped tube. ⑥ Weld seam gnawed. ⑦Outer burr planing. ⑧ Heating. ⑨ The current is small. ⑩ Melting of induction coils and electrodes. ⑪ Fire. ⑫ "No high pressure" phenomenon. We can summarize 12 causes of weld quality failures.

 

Weld seam gnawed

There are two forms of gnawing of welds, one is crescent-shaped scratches; the other is indentation. This kind of trauma is generally relatively minor and will not affect the quality of the weld, but the surface of the pipe is not very beautiful. Lap welds are formed when the depression marks become indented. Pinhole-type sand holes may appear in the crescent-shaped marks produced by the rupture of the upper edge of the extrusion roller hole. Therefore, we distinguish this type of accident from other scratch accidents.

 

(1) Crescent moon marks. The crescent-shaped scratch marks are one of the main scars on the weld, most of which are caused by the squeezing roller. Sometimes the vertical roller that forms a closed hole pattern will also cause scratches, mainly because the upper edge of the hole pattern appears. It is caused by slight cracks falling off the edge or other hard substances sticking to the edge of the hole. Especially after the extrusion roller is heated, many small cracks will be generated on the edge of the hole, and various oxidized metal impurities will be adhered, which is the cause of where the scratching problem lies. When the machine is stopped, we can use our fingers to do a touch inspection along the upper edge of the hole pattern, and repair or replace it according to the situation.

 

(2) Indentation. The indentation is mainly caused by the upper roll forming the closed hole pattern. Due to the characteristics of the hole structure, the bottom diameter of the upper roller is the most stressed. When the hardness of the roll is low, the wear of the pass is accelerated, and when the hardness of the roll is high, the bottom diameter of the pass is very prone to quenching cracks, and the cracked roll edge will cause many slight indentations to the weld. As the quench cracking problem increases and the reduction force increases, the indentation will become more serious. Therefore, it should be replaced in time when the hole type is found to be quenched and cracked.

 

Outer burr planing

Any scars that do not meet the product quality requirements formed after the outer burr is removed are called planing injuries. Although the chance of gouging is very small, it directly affects the appearance quality of the product. In order to reduce planing accidents, the cutting tools should be sharpened first, so as to improve the planing quality and save the tools. Secondly, it is necessary to ensure the stability and flexibility of the planing equipment, and to find a targeted treatment method in the event of an accident.

 

(1) Burning knife. Burning a knife is an accident that happens by accident. Generally, in production, the unit suddenly slows down and the heating temperature is extremely high, or the unit has just started to heat up before reaching the normal speed, which will make the high-temperature burr chips not easy to plan off the pipe surface and accumulate on the cutting edge. The blade burns out. This requires us to pay attention to the coordination and matching of operation actions and time in production, as well as the timely response of operations.

 

(2) The weld is uneven. The longitudinal plane of the weld seam after planing is wavy, which is called planing unevenness. If the waves are as tight as a washboard, it is usually caused by the fact that the relief angle of the cutting tool is too small or the strength of the tool bar is not enough to cause vibration. If the wave is a large wave with a long period, it generally occurs on a smaller pipe diameter. Due to its low weight, the pipe on the idler will bob up and down when planing, forming a wave shape. In addition, the instability of the tool holder will also produce a large wave jump and form a wavy planing result.

 

(3) Planing (scraping) partial. The welded seam after planing is an inclined plane, commonly known as planing (scraping) deviation (Figure 26).

 

Used welded pipe machines

 

There are two main reasons for the planing (scraping) deviation.

One is that the cutting tool is installed inclined, and this problem is relatively easy to solve.

The other is caused by the pipe turning. If it is only a slight planing deviation and does not affect the welding effect, we can adjust the planing knife a little, or control the direction of the welding seam by adjusting the angle and pressure of the guide roller.

 

(4) Plane. Sometimes we can find that a wide and flat wound is left after the burr is removed. In fact, this has nothing to do with planing, but is caused by the "peach-shaped" pipe, which causes the welding seam to form large external burrs after extrusion, so it is necessary to replace the new extrusion roller immediately. Get good weld results and weld gouging quality.

 

The above is one of the reasons for the quality failure of the welding seam when the used welded pipe machines is making pipes, such as the welding seam gnawing and the external burr gouging. The main reasons for the formation of weld gnawing are (1)Crescent moon marks. (2) Indentation. There are also the main reasons for the formation of external burr planing (1) burning knife. (2) The weld is uneven. (3) Planing (scraping) partial. (4) Plane.

关键词:

More News

Analyzing of Double head uncoiler
Analyzing of Double head uncoiler
Time of issue : 2024-11-06
Analysis of a double-head uncoiler:

Analysis of Double-Head Uncoiler Introduction:
A double-head uncoiler is a crucial piece of equipment in metal processing industries. It is primarily used to feed metal coils into roll forming machines, cut-to-length lines, or slitting lines. The double-head design allows for continuous operation by enabling one coil to be loaded and prepared while the other coil is being processed.

Key Components:
1.Mandrels:The double-head uncoiler features two mandrels, each designed to hold and unwind a coil of metal. These mandrels are typically hydraulic or motor-driven to control the unwinding process.
2.Coil Carriages:These assist in loading and unloading coils onto the mandrels. Coil carriages help to position the coils correctly and securely.
3.Hydraulic System:This system is used to expand the mandrel to grip the inner diameter of the coil securely.
4.Control System:The electronic control system automates the switching between coils and ensures synchronization with the subsequent processing line.
5.Brake System:To control the speed of uncoiling and ensure smooth feeding into the processing line, a braking system (mechanical or pneumatic) is integrated.

Operation:
1.Loading:One coil is loaded onto a mandrel with the assistance of a coil carriage. The hydraulic system secures the coil.
2.Preparation:While one coil is being processed, the second coil can be prepared on the other mandrel.
3.Uncoiling:The control system manages the unwinding process, adjusting speed and tension to match the requirements of downstream equipment.
4.Switching Coils:Once the first coil is nearly depleted, the system can seamlessly switch to the second coil, ensuring continuous operation without stopping the line.
Advantages:
1.Continuous Operation:Allows for non-stop processing as one coil can be prepared while the other is being used.
2.Increased Efficiency:Reduces downtime and increases overall productivity in the metal processing line.
3.Improved Safety:Automated systems reduce the need for manual handling of heavy metal coils.
4.Precise Control:Advanced control systems provide precise management of coil unwinding, contributing to product quality and consistency.

Applications:
Double-head uncoilers are widely used in industries such as:
- Steel production and processing- Automotive manufacturing- Construction material production- Electrical appliance manufacturing Conclusion:
Double-head uncoilers are essential in facilitating efficient and continuous production processes in various metalworking industries. Their automation and robust design contribute significantly to operational efficiency, safety, and overall productivity.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analysis of a double-head uncoiler:

Analysis of Double-Head Uncoiler Introduction:
A double-head uncoiler is a crucial piece of equipment in metal processing industries. It is primarily used to feed metal coils into roll forming machines, cut-to-length lines, or slitting lines. The double-head design allows for continuous operation by enabling one coil to be loaded and prepared while the other coil is being processed.

Key Components:
1.Mandrels:The double-head uncoiler features two mandrels, each designed to hold and unwind a coil of metal. These mandrels are typically hydraulic or motor-driven to control the unwinding process.
2.Coil Carriages:These assist in loading and unloading coils onto the mandrels. Coil carriages help to position the coils correctly and securely.
3.Hydraulic System:This system is used to expand the mandrel to grip the inner diameter of the coil securely.
4.Control System:The electronic control system automates the switching between coils and ensures synchronization with the subsequent processing line.
5.Brake System:To control the speed of uncoiling and ensure smooth feeding into the processing line, a braking system (mechanical or pneumatic) is integrated.

Operation:
1.Loading:One coil is loaded onto a mandrel with the assistance of a coil carriage. The hydraulic system secures the coil.
2.Preparation:While one coil is being processed, the second coil can be prepared on the other mandrel.
3.Uncoiling:The control system manages the unwinding process, adjusting speed and tension to match the requirements of downstream equipment.
4.Switching Coils:Once the first coil is nearly depleted, the system can seamlessly switch to the second coil, ensuring continuous operation without stopping the line.
Advantages:
1.Continuous Operation:Allows for non-stop processing as one coil can be prepared while the other is being used.
2.Increased Efficiency:Reduces downtime and increases overall productivity in the metal processing line.
3.Improved Safety:Automated systems reduce the need for manual handling of heavy metal coils.
4.Precise Control:Advanced control systems provide precise management of coil unwinding, contributing to product quality and consistency.

Applications:
Double-head uncoilers are widely used in industries such as:
- Steel production and processing- Automotive manufacturing- Construction material production- Electrical appliance manufacturing Conclusion:
Double-head uncoilers are essential in facilitating efficient and continuous production processes in various metalworking industries. Their automation and robust design contribute significantly to operational efficiency, safety, and overall productivity.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing of High-frequency quenching equipment
Analyzing of High-frequency quenching equipment
High-Frequency Quenching Equipment AnalysisHigh-frequency quenching equipment is advanced machinery used in the heat treatment of metals to improve their hardness and wear resistance. This method involves heating the surface of a workpiece to a very high temperature using high-frequency electric currents, followed by rapid cooling (quenching). The process effectively enhances the mechanical properties of the metal components, making them suitable for high-stress applications. Here are some key points to analyze high-frequency quenching equipment:

1.Working Principle:
High-frequency quenching equipment utilizes induction heating, where alternating electromagnetic fields generate heat within the metal workpiece.
The frequency of the alternating current is typically between100 kHz and500 kHz, which effectively heats the surface rapidly while keeping the core relatively cool.

2.Components:
Power Supply:Generates the high-frequency current necessary for induction heating.
Induction Coil:The coil is designed to fit around or near the workpiece, creating a magnetic field that induces eddy currents on its surface.
Cooling System:Typically, a coolant (such as water or oil) is sprayed or immersed to rapidly cool the heated metal surface.
Control System:Manages the operation, regulating the frequency, heating time, and cooling process to achieve desired material properties.

3.Advantages:
Precision:High control over the heating parameters allows for localized hardening of specific areas without affecting the entire workpiece.
Efficiency:Fast heating and cooling cycles reduce overall processing time.
Consistency:Achieves uniform hardening across the treated surface, improving the reliability and performance of components.
Energy Savings:Induction heating is highly energy-efficient, converting electrical energy directly into heat within the material.

4.Applications:
Automotive Industry:Used to harden components like gears, crankshafts, camshafts, and drive shafts.
Aerospace:Treats critical parts such as turbine blades and landing gear components.
Tool and Die Making:Enhanced hardness and durability of tools such as cutting tools, punches, and dies.
Machine Parts:Hardening of various machine parts, including spindles, rollers, and bearings.

5.Maintenance and Safety:
Regular inspection and maintenance of the induction coil, power supply, and cooling system are essential to ensure optimal performance and longevity.
Safety precautions must be taken to protect operators from high temperatures, electrical hazards, and coolant exposure.

6.Technological Advancements:
Modern high-frequency quenching equipment often incorporates advanced control systems with real-time monitoring and automation features.
Integration with computer numerical control (CNC) systems allows for precise and repeatable processing of complex geometries.

In conclusion, high-frequency quenching equipment plays a crucial role in the modern manufacturing industry by enhancing the durability and performance of metal components. Understanding its working principles, advantages, and applications can help businesses select the right equipment and optimize their heat treatment processes.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
High-Frequency Quenching Equipment AnalysisHigh-frequency quenching equipment is advanced machinery used in the heat treatment of metals to improve their hardness and wear resistance. This method involves heating the surface of a workpiece to a very high temperature using high-frequency electric currents, followed by rapid cooling (quenching). The process effectively enhances the mechanical properties of the metal components, making them suitable for high-stress applications. Here are some key points to analyze high-frequency quenching equipment:

1.Working Principle:
High-frequency quenching equipment utilizes induction heating, where alternating electromagnetic fields generate heat within the metal workpiece.
The frequency of the alternating current is typically between100 kHz and500 kHz, which effectively heats the surface rapidly while keeping the core relatively cool.

2.Components:
Power Supply:Generates the high-frequency current necessary for induction heating.
Induction Coil:The coil is designed to fit around or near the workpiece, creating a magnetic field that induces eddy currents on its surface.
Cooling System:Typically, a coolant (such as water or oil) is sprayed or immersed to rapidly cool the heated metal surface.
Control System:Manages the operation, regulating the frequency, heating time, and cooling process to achieve desired material properties.

3.Advantages:
Precision:High control over the heating parameters allows for localized hardening of specific areas without affecting the entire workpiece.
Efficiency:Fast heating and cooling cycles reduce overall processing time.
Consistency:Achieves uniform hardening across the treated surface, improving the reliability and performance of components.
Energy Savings:Induction heating is highly energy-efficient, converting electrical energy directly into heat within the material.

4.Applications:
Automotive Industry:Used to harden components like gears, crankshafts, camshafts, and drive shafts.
Aerospace:Treats critical parts such as turbine blades and landing gear components.
Tool and Die Making:Enhanced hardness and durability of tools such as cutting tools, punches, and dies.
Machine Parts:Hardening of various machine parts, including spindles, rollers, and bearings.

5.Maintenance and Safety:
Regular inspection and maintenance of the induction coil, power supply, and cooling system are essential to ensure optimal performance and longevity.
Safety precautions must be taken to protect operators from high temperatures, electrical hazards, and coolant exposure.

6.Technological Advancements:
Modern high-frequency quenching equipment often incorporates advanced control systems with real-time monitoring and automation features.
Integration with computer numerical control (CNC) systems allows for precise and repeatable processing of complex geometries.

In conclusion, high-frequency quenching equipment plays a crucial role in the modern manufacturing industry by enhancing the durability and performance of metal components. Understanding its working principles, advantages, and applications can help businesses select the right equipment and optimize their heat treatment processes.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing advantages and disadvantages of stainless steel electrolytic tube
Analyzing  advantages and disadvantages of stainless steel electrolytic tube
Analyzing  advantages and disadvantages of stainless steel electrolytic tube

Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.

Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.

Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analyzing  advantages and disadvantages of stainless steel electrolytic tube

Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.

Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.

Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing of the workflow of a laser tube cutting machine
Analyzing of the workflow of a laser tube cutting machine
Analysis of the workflow of a laser tube cutting machine:

Workflow Analysis of a Laser Tube Cutting Machine

1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.

2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.

3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.

4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.

5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.

6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.

7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.

8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.

SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analysis of the workflow of a laser tube cutting machine:

Workflow Analysis of a Laser Tube Cutting Machine

1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.

2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.

3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.

4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.

5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.

6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.

7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.

8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.

SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Contact information
Tel: +86-13392281699
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province

Recommendation

Online Inquiry

留言应用名称:
底部留言
描述:

LINK

Contact Us

Tel (wechat): 13336487288
Wechat:+86 13336487288

WhatsApp:+86 13336487288
Email: zty@usedpipemill.com

Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province

QRCODE

Copyright 0 2021 jinyujie. 粤ICP备13051810号 Powerby:  300.cn