MENU

/
/
Common faults of used welded pipe mills production line forming machines (2)

Common faults of used welded pipe mills production line forming machines (2)

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-09-24 11:30
  • Pvs:

【概要描述】Common faults of used welded pipe mills production line forming machines can be divided into ① deviation ② scratches ③ "indenter" phenomenon ④ "drill belt" phenomenon. In order to let everyone understand the common faults of the molding machine in detail, we will introduce ① deviation.

Common faults of used welded pipe mills production line forming machines (2)

【概要描述】Common faults of used welded pipe mills production line forming machines can be divided into ① deviation ② scratches ③ "indenter" phenomenon ④ "drill belt" phenomenon. In order to let everyone understand the common faults of the molding machine in detail, we will introduce ① deviation.

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-09-24 11:30
  • Pvs:
Detail

Common faults of used welded pipe mills production line forming machines can be divided into ① deviation ② scratches ③ "indenter" phenomenon ④ "drill belt" phenomenon. In order to let everyone understand the common faults of the molding machine in detail, we will introduce ① deviation.

 

The deviation is also called turning over the belt. Due to various reasons, the deviation will occur at any time between the rolls of the forming machine. The specific performance is that after the tube blank comes out of the flat roll or vertical roll, the heights of the two edges are different. In severe cases, the tube blank will turn over and cannot enter the next pass smoothly, so it is forced to stop processing, which directly affects the production. Increase in work rate. However, there are two reasons for the deviation of the forming machine of the used welded pipe mills production line, that is, the deviation of the flat roll and the deviation of the vertical roll. We will introduce them in detail according to these two reasons.

 

1.2 Analysis of the causes of vertical roller deviation

(1) The heights of the two vertical rollers are different. When the heights of the two vertical rollers are different, it is easy to cause the tube blank to turn over in the hole pattern. A slight height difference can be verified by detecting the upper boss of the vertical roll with a steel ruler, and in serious cases, it can be obtained by directly touching it with a finger.

 

Used welded pipe mills production line

 

(2) The bearing is damaged. When the vertical roller bearing is damaged, it is easy to cause the tube blank to deviate. After the bearing is damaged, the vertical roll pass cannot control the stable operation of the tube blank well, and also destroy the height position of the two vertical rolls. When the upper end bearing of the vertical roller is damaged, the tube blank will be turned up to the side of the hole pattern with the damaged bearing; when the lower end bearing of the vertical roller is damaged, the tube blank will be turned up to the side of the hole pattern with the intact bearing, and the bearing should also be considered. severity of damage.

 

(3) The front flat roller is not straight. At the flat roll before the vertical roll, the tube blank already has the phenomenon of deviation, which is mainly because the center of the flat roll is not correct. When the center deviation is small, the tube blank can barely enter the vertical roller hole, but if the vertical roller is slightly inappropriate in some aspects, and the center of the flat roll deviates greatly, the tube blank will be deviated and turned over. , so the flat roll pass must be adjusted to the center position. If the center of the flat roll is only slightly out of alignment, good results can also be obtained by adjusting the pressure of the flat roll.

 

(4) The size of the vertical rollers is different. When replacing the vertical rollers, it must be noted that the outer diameters of the two vertical rollers should be the same. At the center of the shape, the tube blank will shift to the side with the smaller roll diameter and turn up to the side with the larger roll diameter. In the production of thick-walled pipes with larger diameters, the phenomenon of deviation is not obvious, but when producing thin-walled tubes, deviations may occur. Moreover, the thinner the tube wall, the larger the error of the roll diameter, and the deviation The problem becomes more serious.

 

(5) The center of the vertical roller is not correct. When the deviation of the center position of the vertical roller is small, the deviation of the tube blank is not easy to occur, and the operation of the tube blank is relatively stable. Generally, the deviation of the flat roll can only be aggravated. Only when the center deviation is large, the deviation problem will be clearly exposed.

 

(6) The vertical roller moves axially. The slight axial movement of the vertical roller will generally not cause the tube blank to deviate, especially for ordinary thick-walled tubes. It is easy to occur only when producing small-diameter thin-walled tubes, because the rigidity of the tube blank is poor, and it is easy to be controlled by the swinging hole pattern and cause deviation. If the axial movement of the vertical roller is large, the probability of deviation will increase.

 

The reasons for the deviation of the common faults of the forming machine of the used welded pipe mills production line mainly include the deviation of the flat roll and the deviation of the vertical roll. Today, we will first introduce the analysis of the reasons for the deviation of the vertical roll: ① The heights of the two vertical rolls are different. ②The bearing is damaged. ③ The front flat roller is not correct. ④The size of vertical rollers is different. ⑤ The center of the vertical roller is not correct. ⑥The vertical roller moves axially.

关键词:

More News

Analyzing advantages and disadvantages of stainless steel electrolytic tube
Analyzing  advantages and disadvantages of stainless steel electrolytic tube
Analyzing  advantages and disadvantages of stainless steel electrolytic tube

Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.

Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.

Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analyzing  advantages and disadvantages of stainless steel electrolytic tube

Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.

Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.

Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing of the workflow of a laser tube cutting machine
Analyzing of the workflow of a laser tube cutting machine
Analysis of the workflow of a laser tube cutting machine:

Workflow Analysis of a Laser Tube Cutting Machine

1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.

2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.

3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.

4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.

5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.

6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.

7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.

8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.

SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analysis of the workflow of a laser tube cutting machine:

Workflow Analysis of a Laser Tube Cutting Machine

1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.

2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.

3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.

4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.

5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.

6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.

7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.

8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.

SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing the energy consumption and operating costs of a laser tube cutting machine involves examining several key factors
Analyzing the energy consumption and operating costs of a laser tube cutting machine involves examining several key factors
4.Operational Time
Utilization Rate: How often and for how long the machine is operated directly impacts total energy consumption.
Idle Time: Machines may consume energy even when not actively cutting, depending on the design and standby modes.
5.Maintenance and Consumables
Lens and Mirrors: Regular maintenance and replacement of optical components are necessary, adding to operational costs.
Assist Gases: Gases like oxygen, nitrogen, or compressed air are used in the cutting process and add to operating expenses.
6.Labor Costs
Operational Efficiency: Skilled operators can optimize machine performance, reducing waste and downtime.
Automation: Automated systems may reduce labor costs but require initial investment and maintenance.
7.Capital Depreciation
Machine Depreciation: Over the machine’s lifespan, depreciation costs contribute to overall operating costs. Higher initial investment means higher depreciation.
These calculations can be adjusted based on actual usage, efficiency, and local energy prices.

ConclusionThe energy consumption and operating costs of a laser tube cutting machine depend on multiple factors, including the type of laser, machine efficiency, material being cut, operational time, and maintenance requirements. By optimizing each of these factors, it’s possible to manage and reduce the overall operating costs effectively.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
4.Operational Time
Utilization Rate: How often and for how long the machine is operated directly impacts total energy consumption.
Idle Time: Machines may consume energy even when not actively cutting, depending on the design and standby modes.
5.Maintenance and Consumables
Lens and Mirrors: Regular maintenance and replacement of optical components are necessary, adding to operational costs.
Assist Gases: Gases like oxygen, nitrogen, or compressed air are used in the cutting process and add to operating expenses.
6.Labor Costs
Operational Efficiency: Skilled operators can optimize machine performance, reducing waste and downtime.
Automation: Automated systems may reduce labor costs but require initial investment and maintenance.
7.Capital Depreciation
Machine Depreciation: Over the machine’s lifespan, depreciation costs contribute to overall operating costs. Higher initial investment means higher depreciation.
These calculations can be adjusted based on actual usage, efficiency, and local energy prices.

ConclusionThe energy consumption and operating costs of a laser tube cutting machine depend on multiple factors, including the type of laser, machine efficiency, material being cut, operational time, and maintenance requirements. By optimizing each of these factors, it’s possible to manage and reduce the overall operating costs effectively.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analysis Laser tube cutting machines components
Analysis Laser tube cutting machines components
Laser tube cutting machines are intricate systems designed to cut metal tubes with high precision using laser technology:

1.Laser Source:This is the core component that generates the laser beam used for cutting. It can be of different types, such as CO2, fiber, or Nd:YAG lasers, each providing varying power levels and suitable for different materials and thicknesses.
2.Beam Delivery System: This system directs the laser beam from the laser source to the cutting head. It usually consists of mirrors and lenses ensuring the beam remains focused and consistent in power and quality.
3.Cutting Head:Includes a focusing lens, a nozzle, and sometimes a height sensor. The focusing lens concentrates the laser beam to a fine point for precise cutting. The nozzle directs assist gases (like oxygen or nitrogen) towards the cutting point, helping to clear molten material and enhance cutting quality.
4.Assist Gas System: Supplies gases (usually oxygen, nitrogen, or compressed air) required for the cutting process. Different gases are used based on the material being cut to achieve optimal cutting quality and speed.
5.Chuck and Rotary Axis: Holds and rotates the tube to position it accurately under the laser beam. These chucks can be adjusted to accommodate different tube sizes and shapes, ensuring secure and precise handling.
6.CNC Control System: The brain of the operation, this computer numerical control system runs the software that guides the laser cutting process. It handles the movement of the cutting head, the rotation of the chuck, and the application of assist gases per the programmed design.
7.Material Handling System: Includes loading and unloading mechanisms that manage the tubes before and after cutting. Automated systems can greatly enhance productivity by reducing manual intervention.
8.Cooling System: Maintains the temperature of the laser source and other critical components to ensure they operate efficiently and avoid overheating.
9.Exhaust and Filtration System: Removes fumes and particulates generated during the cutting process, ensuring a clean working environment and protecting sensitive components from contamination.
10.Safety Features: Includes protective barriers, interlock switches, and emergency stop buttons to ensure operator safety during machine operation.

Each of these components must function optimally and in harmony to achieve precise and efficient tube cutting with minimal wastage and high-quality outputs.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Laser tube cutting machines are intricate systems designed to cut metal tubes with high precision using laser technology:

1.Laser Source:This is the core component that generates the laser beam used for cutting. It can be of different types, such as CO2, fiber, or Nd:YAG lasers, each providing varying power levels and suitable for different materials and thicknesses.
2.Beam Delivery System: This system directs the laser beam from the laser source to the cutting head. It usually consists of mirrors and lenses ensuring the beam remains focused and consistent in power and quality.
3.Cutting Head:Includes a focusing lens, a nozzle, and sometimes a height sensor. The focusing lens concentrates the laser beam to a fine point for precise cutting. The nozzle directs assist gases (like oxygen or nitrogen) towards the cutting point, helping to clear molten material and enhance cutting quality.
4.Assist Gas System: Supplies gases (usually oxygen, nitrogen, or compressed air) required for the cutting process. Different gases are used based on the material being cut to achieve optimal cutting quality and speed.
5.Chuck and Rotary Axis: Holds and rotates the tube to position it accurately under the laser beam. These chucks can be adjusted to accommodate different tube sizes and shapes, ensuring secure and precise handling.
6.CNC Control System: The brain of the operation, this computer numerical control system runs the software that guides the laser cutting process. It handles the movement of the cutting head, the rotation of the chuck, and the application of assist gases per the programmed design.
7.Material Handling System: Includes loading and unloading mechanisms that manage the tubes before and after cutting. Automated systems can greatly enhance productivity by reducing manual intervention.
8.Cooling System: Maintains the temperature of the laser source and other critical components to ensure they operate efficiently and avoid overheating.
9.Exhaust and Filtration System: Removes fumes and particulates generated during the cutting process, ensuring a clean working environment and protecting sensitive components from contamination.
10.Safety Features: Includes protective barriers, interlock switches, and emergency stop buttons to ensure operator safety during machine operation.

Each of these components must function optimally and in harmony to achieve precise and efficient tube cutting with minimal wastage and high-quality outputs.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Contact information
Tel: +86-13392281699
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province

Recommendation

Online Inquiry

留言应用名称:
底部留言
描述:

LINK

Contact Us

Tel (wechat): 13336487288
Wechat:+86 13336487288

WhatsApp:+86 13336487288
Email: zty@usedpipemill.com

Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province

QRCODE

Copyright 0 2021 jinyujie. 粤ICP备13051810号 Powerby:  300.cn