Solutions to Difficulties in Forming Thick-walled Pipes of used roll forming machine (2)
- Sort:Information
- Auth:
- Source:
- Release time:2022-08-22 11:30
- Pvs:
【概要描述】Solutions to solve the difficulties in forming thick-walled tubes of used roll forming machine include special forming unit solutions, rough forming pass solutions, fine forming pass solutions and comprehensive solutions. Let me first introduce the solution (2) of the fine forming hole pattern .
Solutions to Difficulties in Forming Thick-walled Pipes of used roll forming machine (2)
【概要描述】Solutions to solve the difficulties in forming thick-walled tubes of used roll forming machine include special forming unit solutions, rough forming pass solutions, fine forming pass solutions and comprehensive solutions. Let me first introduce the solution (2) of the fine forming hole pattern .
- Sort:Information
- Auth:
- Source:
- Release time:2022-08-22 11:30
- Pvs:
Solutions to solve the difficulties in forming thick-walled tubes of used roll forming machine include special forming unit solutions, rough forming pass solutions, fine forming pass solutions and comprehensive solutions. Let me first introduce the solution (2) of the fine forming hole pattern .
Precision forming pass solution(2)
The used roll forming machine is required to increase the deformation of the edge of the tube blank under the condition of making a round, precision-formed closed pass, and it is also difficult to reduce the diameter without excessive reduction. However, this process goal can be achieved by adopting a flat oval precision forming closed hole type. The forming idea of the flat ellipse closed pass is: "flat ellipse + springback = circle", so that the thick-walled tube can be fully deformed in the flat ellipse closed pass. At the same time, it is beneficial for the tube blank to smoothly enter the hole pattern and reduce the difficulty of operation.
If you want to solve the used roll forming machine precision forming pass, you must know the following information:
① The connotation of the flat oval closed pass.
② The function of the flat ellipse closed hole type.
③ The design principle of flat ellipse closed hole type.
The following first introduces the connotation of the flat ellipse closed hole type.
(1) The connotation of the flat ellipse closed hole type. The flat ellipse closed hole type means that the hole type curve of the closed hole roller is an ellipse with the major axis in the horizontal direction, the minor axis in the vertical direction and the difference between the major and minor axes is not too large. Its connotation has two points:
A: Micro-ellipse and macro-circle. Since the ellipse of the ellipse is not large, the ellipse can be roughly regarded as a circle with a diameter of φ, as shown by the red line in the figure, and this red line is the hole profile of the circular closed-hole roller. Unified in the following formula.
In the formula, △ is the difference between the long and short semi-axes of the elliptical hole, △=2~4mm, the larger the wall-to-diameter ratio, the larger the value; bf is the correction value of the guide ring wall thickness and arc length; B is the width of the tube blank. The formula not only shows the internal connection between the flat ellipse hole type and the round closed hole pattern, but also stipulates the key dimensions of the flat ellipse closed hole pattern, which is an important basis for the design of the flat ellipse closed hole pattern.
B: The arc lengths of the holes are equal. Starting from the actual production of welded pipes, the arc length of the pass of the flat oval closed pass roll must be equal to the arc length of the round closed pass, which is also a basic principle that should be followed in the design of the flat oval closed pass roll.
For the used roll forming machine, four solutions are proposed for the forming difficulties of thick-walled pipes. According to the actual situation, the corresponding solutions are used to solve them. I hope to provide you with effective help.
Part of the content of this site comes from the Internet. This site only provides information storage. The copyright belongs to the original author. It does not bear the relevant legal responsibility and does not represent the views and positions of this site. Please contact and delete it if there is any infringement.
More News
Time of issue : 2024-11-04
1.Working Principle:
High-frequency quenching equipment utilizes induction heating, where alternating electromagnetic fields generate heat within the metal workpiece.
The frequency of the alternating current is typically between100 kHz and500 kHz, which effectively heats the surface rapidly while keeping the core relatively cool.
2.Components:
Power Supply:Generates the high-frequency current necessary for induction heating.
Induction Coil:The coil is designed to fit around or near the workpiece, creating a magnetic field that induces eddy currents on its surface.
Cooling System:Typically, a coolant (such as water or oil) is sprayed or immersed to rapidly cool the heated metal surface.
Control System:Manages the operation, regulating the frequency, heating time, and cooling process to achieve desired material properties.
3.Advantages:
Precision:High control over the heating parameters allows for localized hardening of specific areas without affecting the entire workpiece.
Efficiency:Fast heating and cooling cycles reduce overall processing time.
Consistency:Achieves uniform hardening across the treated surface, improving the reliability and performance of components.
Energy Savings:Induction heating is highly energy-efficient, converting electrical energy directly into heat within the material.
4.Applications:
Automotive Industry:Used to harden components like gears, crankshafts, camshafts, and drive shafts.
Aerospace:Treats critical parts such as turbine blades and landing gear components.
Tool and Die Making:Enhanced hardness and durability of tools such as cutting tools, punches, and dies.
Machine Parts:Hardening of various machine parts, including spindles, rollers, and bearings.
5.Maintenance and Safety:
Regular inspection and maintenance of the induction coil, power supply, and cooling system are essential to ensure optimal performance and longevity.
Safety precautions must be taken to protect operators from high temperatures, electrical hazards, and coolant exposure.
6.Technological Advancements:
Modern high-frequency quenching equipment often incorporates advanced control systems with real-time monitoring and automation features.
Integration with computer numerical control (CNC) systems allows for precise and repeatable processing of complex geometries.
In conclusion, high-frequency quenching equipment plays a crucial role in the modern manufacturing industry by enhancing the durability and performance of metal components. Understanding its working principles, advantages, and applications can help businesses select the right equipment and optimize their heat treatment processes.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
1.Working Principle:
High-frequency quenching equipment utilizes induction heating, where alternating electromagnetic fields generate heat within the metal workpiece.
The frequency of the alternating current is typically between100 kHz and500 kHz, which effectively heats the surface rapidly while keeping the core relatively cool.
2.Components:
Power Supply:Generates the high-frequency current necessary for induction heating.
Induction Coil:The coil is designed to fit around or near the workpiece, creating a magnetic field that induces eddy currents on its surface.
Cooling System:Typically, a coolant (such as water or oil) is sprayed or immersed to rapidly cool the heated metal surface.
Control System:Manages the operation, regulating the frequency, heating time, and cooling process to achieve desired material properties.
3.Advantages:
Precision:High control over the heating parameters allows for localized hardening of specific areas without affecting the entire workpiece.
Efficiency:Fast heating and cooling cycles reduce overall processing time.
Consistency:Achieves uniform hardening across the treated surface, improving the reliability and performance of components.
Energy Savings:Induction heating is highly energy-efficient, converting electrical energy directly into heat within the material.
4.Applications:
Automotive Industry:Used to harden components like gears, crankshafts, camshafts, and drive shafts.
Aerospace:Treats critical parts such as turbine blades and landing gear components.
Tool and Die Making:Enhanced hardness and durability of tools such as cutting tools, punches, and dies.
Machine Parts:Hardening of various machine parts, including spindles, rollers, and bearings.
5.Maintenance and Safety:
Regular inspection and maintenance of the induction coil, power supply, and cooling system are essential to ensure optimal performance and longevity.
Safety precautions must be taken to protect operators from high temperatures, electrical hazards, and coolant exposure.
6.Technological Advancements:
Modern high-frequency quenching equipment often incorporates advanced control systems with real-time monitoring and automation features.
Integration with computer numerical control (CNC) systems allows for precise and repeatable processing of complex geometries.
In conclusion, high-frequency quenching equipment plays a crucial role in the modern manufacturing industry by enhancing the durability and performance of metal components. Understanding its working principles, advantages, and applications can help businesses select the right equipment and optimize their heat treatment processes.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Time of issue : 2024-11-02
Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.
Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.
Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.
Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.
Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Time of issue : 2024-10-31
Workflow Analysis of a Laser Tube Cutting Machine
1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.
2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.
3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.
4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.
5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.
6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.
7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.
8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.
SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Workflow Analysis of a Laser Tube Cutting Machine
1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.
2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.
3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.
4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.
5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.
6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.
7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.
8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.
SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Time of issue : 2024-10-30
Utilization Rate: How often and for how long the machine is operated directly impacts total energy consumption.
Idle Time: Machines may consume energy even when not actively cutting, depending on the design and standby modes.
5.Maintenance and Consumables
Lens and Mirrors: Regular maintenance and replacement of optical components are necessary, adding to operational costs.
Assist Gases: Gases like oxygen, nitrogen, or compressed air are used in the cutting process and add to operating expenses.
6.Labor Costs
Operational Efficiency: Skilled operators can optimize machine performance, reducing waste and downtime.
Automation: Automated systems may reduce labor costs but require initial investment and maintenance.
7.Capital Depreciation
Machine Depreciation: Over the machine’s lifespan, depreciation costs contribute to overall operating costs. Higher initial investment means higher depreciation.
These calculations can be adjusted based on actual usage, efficiency, and local energy prices.
ConclusionThe energy consumption and operating costs of a laser tube cutting machine depend on multiple factors, including the type of laser, machine efficiency, material being cut, operational time, and maintenance requirements. By optimizing each of these factors, it’s possible to manage and reduce the overall operating costs effectively.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Utilization Rate: How often and for how long the machine is operated directly impacts total energy consumption.
Idle Time: Machines may consume energy even when not actively cutting, depending on the design and standby modes.
5.Maintenance and Consumables
Lens and Mirrors: Regular maintenance and replacement of optical components are necessary, adding to operational costs.
Assist Gases: Gases like oxygen, nitrogen, or compressed air are used in the cutting process and add to operating expenses.
6.Labor Costs
Operational Efficiency: Skilled operators can optimize machine performance, reducing waste and downtime.
Automation: Automated systems may reduce labor costs but require initial investment and maintenance.
7.Capital Depreciation
Machine Depreciation: Over the machine’s lifespan, depreciation costs contribute to overall operating costs. Higher initial investment means higher depreciation.
These calculations can be adjusted based on actual usage, efficiency, and local energy prices.
ConclusionThe energy consumption and operating costs of a laser tube cutting machine depend on multiple factors, including the type of laser, machine efficiency, material being cut, operational time, and maintenance requirements. By optimizing each of these factors, it’s possible to manage and reduce the overall operating costs effectively.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province