MENU

/
/
Learn about the solutions for thick-wall pipe forming of directly forming to square pipe mill(1)

Learn about the solutions for thick-wall pipe forming of directly forming to square pipe mill(1)

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2022-08-19 11:30
  • Pvs:

【概要描述】In the welded pipe industry, people generally regard welded pipes with a ratio of wall thickness to outside diameter of 12%≤t/D≤18% as thick-walled pipes. Regarding the forming difficulties of thick-walled pipes with directly forming to square pipe mill, they clearly propose Solutions such as the edge double-semi-warp forming hole shape.

Learn about the solutions for thick-wall pipe forming of directly forming to square pipe mill(1)

【概要描述】In the welded pipe industry, people generally regard welded pipes with a ratio of wall thickness to outside diameter of 12%≤t/D≤18% as thick-walled pipes. Regarding the forming difficulties of thick-walled pipes with directly forming to square pipe mill, they clearly propose Solutions such as the edge double-semi-warp forming hole shape.

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2022-08-19 11:30
  • Pvs:
Detail

In the welded pipe industry, people generally regard welded pipes with a ratio of wall thickness to outside diameter of 12%≤t/D≤18% as thick-walled pipes. Regarding the forming difficulties of thick-walled pipes with directly forming to square pipe mill, they clearly propose Solutions such as the edge double-semi-warp forming hole shape.

 

Difficulties in processing technology of thick-walled pipe deformation:

There are three processing technology problems for thick-walled welded pipe forming with the directly forming to square pipe mill: 1、The large bending springback. 2、The actual deformation blind zone is wide. 3、The large difference between the inner and outer circumferences.

 

Directly forming to square pipe mill

 

Bending resilience is large:

The tube blank will produce two kinds of deformation, elastic deformation and plastic deformation, in the process of bending the tube blank from a straight condition into a cylindrical shape. In addition, it is inevitable to produce springback, the key is how much. Thick-walled pipes have large deformation resistance and much springback, resulting in insufficient pipe blank deformation.

 

Affected by the mechanical properties of the tube blank, the wall-to-diameter ratio (t/D), the main parameters of the pass, the characteristics of the machine and equipment, the actual operation error, etc., the springback regularity is very different, so it is difficult to accurately predict and analyze the springback amount. Give precise springback compensation. At this stage, there are roughly two commonly used methods for characterizing springback:

 

①Actual measurement characterizatio. According to the evaluation of the chord length difference △b before and after springback at the same point on the edge of the deformed tube blank and the two index values ​​of the semi-longitude difference △R before and after springback at the bending position, it is characterized by referring to the formula to calculate the following: specific accurate measurement of the characterization value is more intuitive , The most widely used

 

Directly forming to square pipe mill

 

②Function representation. According to the basic theory of bending neutralization layer and the basic theory of metal elastoplastic deformation, the correlation between the deformation of the deformed tube before and after springback can be calculated. Refer to the formula to calculate the following:

 

Directly forming to square pipe mill

 

The theoretical significance of the second calculation formula is that according to the deformation half-warp of the tube blank after springback, the yield strength of the tube blank, the thickness of the tube blank, the springback angle and the metal modulus, the required pass bending deformation radius R can be directly calculated. In turn, the adverse effects of springback on the formed tube are eliminated.

 

Deformation blind zone width

Deformation dead zone, also known as deformation dead zone, means that in the process of tube blank deformation, no matter how it deforms, there is no way to deform at the edge of the tube blank and the area whose width is equal to the thickness of the tube blank. In fact, a part of the road sections adjacent to the deformation blind zone of the basic theory also belong to the range of the deformation blind zone. The existence of the deformation blind zone has its inevitable trend.

 

①There is an inevitable trend of deformation blind zone. The bending and deformation of the edge of the tube blank can be analyzed and studied with reference to the basic theory of bending stiffness. When a billet with a thickness of t has to bend and deform a billet with a length of L under the action of the forming and rolling force P, the positioning point of the section of the billet will definitely cause a vertical displacement y, that is, the billet will bend and deform. Calculate the bending deformation radius of the tube blank. When forming a thick-walled pipe of Φ60mm X 6mm, the calculation results show that in order to produce a bending deformation of only 0.001cm in the width of the thickness area (0.6cm), a forming force of 48kN is required. This is for welded pipe forming equipment. It is impossible to provide; what's more, according to the welding pipe forming process, the closer to the edge of the tube blank, the smaller the specific forming force acting on the tube blank, which in turn causes the specific deformation blind zone to be wider.

 

In addition, from the perspective of the specific deformation effect, a bending deformation of 0.001 cm should be completed in a length of 0.6 cm, and the bending radius R is equal to 30 cm. The arc length of 0.6 cm is the same as a straight line on an arc with a half meridian of 30 cm.

 

②Comparison of deformation blind zone. Both thick-walled pipes and thin-walled pipes have deformation blind zones; only thick-walled pipes' deformation blind zones account for a higher proportion of the total width of the tube blank. Taking Φ60mm X 3mm and Φ60mm X 6mm as examples, their blind zone width ratios of 2t /B (%) are 3.24% and 6.89%, respectively, and the latter is twice that of the previous one. Therefore, according to the calculation formula of the total opening width of the deformation blind zone, the total width of the trench on both sides of the wall thickness can be obtained as 0.64mm (tube inner diameter r2=27.87mm) and 2.79mm (tube inner diameter r2=25.08mm), the latter being 4.36 times of the former, the influence of such a wide groove on the thick-walled pipe of thedirectly forming to square pipe mill on the weld strength is obvious.

 

Large difference in diameter between inside and outside

Still taking the Φ60mm X 6mm thick-walled pipe as an example, the difference between the inner and outer circumferences is 37.68mm, while the difference between the inner and outer circumferences of the Φ60mm X 3mm standard wall thickness pipe is only 18.84mm. A pipe with a large circumference difference represents a large amount of internal axial stress accumulated in the formed tube. The process of compressing the inner layer and stretching the outer layer requires a lot of deformation work, and its increased deformation resistance has an impact on the unit. Both the drag output power and the rigidity of the unit have special requirements. After welding, the large amount of compressive stress accumulated on the inner side of the neutral layer of the pipeline always tries to open the weld; in addition, the large amount of tensile stress accumulated on the outer side of the neutral layer is always pulling the weld, trying to get rid of the weld. In addition, the actual effects of these two stresses on the welding seam are the same, with superimposing effects. These accumulated stresses in thick-wall welded pipes cause serious stress corrosion damage to the weld seam, and have great potential safety hazards, which must be solved by the welded pipe forming process.

 

Part of the content of this site comes from the Internet. This site only provides information storage. The copyright belongs to the original author. It does not bear the relevant legal responsibility and does not represent the views and positions of this site. Please contact and delete it if there is any infringement.

关键词:

More News

Factors and various influences to ensure the quality of used high frequency welded pipe machine welded pipe products(1)
Factors and various influences to ensure the quality of used high frequency welded pipe machine welded pipe products(1)
In the process of producing welded pipes with used high frequency welded pipe machine, how to ensure that the product quality meets the requirements of technical standards and the needs of customers, it is necessary to analyze the factors affecting product quality in the production process of steel pipes.
Detail
In the process of producing welded pipes with used high frequency welded pipe machine, how to ensure that the product quality meets the requirements of technical standards and the needs of customers, it is necessary to analyze the factors affecting product quality in the production process of steel pipes.
Improving lubricating effect of flying saw on used welded pipe equipment
Improving lubricating effect of flying saw on used welded pipe equipment
Through the technical improvement of the used welded pipe equipment, the lubrication of the gear and rack of the flying saw has been effectively improved, and the specific performance is as follows:
Detail
Through the technical improvement of the used welded pipe equipment, the lubrication of the gear and rack of the flying saw has been effectively improved, and the specific performance is as follows:
Why does the used roll forming machine flying saw saw lack of lubrication?
Why does the used roll forming machine flying saw saw lack of lubrication?
When the used roll forming machine produces steel pipes, the pipe fittings move at a constant speed according to the set speed, and the saw car is stationary relative to the unit before the sawing process. When the steel pipe reaches the set length, the clamping device of the saw car clamps the steel pipe, and the drive mechanism drives the saw car to move with the steel pipe and perform the sawing process until the sawing operation is completed. When the sawing process of the flying saw is completed, the driving device drives the saw carriage to return to the initial position. The reciprocating motion of the saw car is realized by the relative movement of the rack at the bottom of the saw car and the gear fixedly installed on the machine bed system.
Detail
When the used roll forming machine produces steel pipes, the pipe fittings move at a constant speed according to the set speed, and the saw car is stationary relative to the unit before the sawing process. When the steel pipe reaches the set length, the clamping device of the saw car clamps the steel pipe, and the drive mechanism drives the saw car to move with the steel pipe and perform the sawing process until the sawing operation is completed. When the sawing process of the flying saw is completed, the driving device drives the saw carriage to return to the initial position. The reciprocating motion of the saw car is realized by the relative movement of the rack at the bottom of the saw car and the gear fixedly installed on the machine bed system.
Weld quality failure caused by used welded pipe machines (9)
Weld quality failure caused by used welded pipe machines (9)
When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.
Detail
When manufacturing welded pipes for used welded pipe machines, judging that the quality of the welded pipes meets the standard depends on the quality of the welds. Therefore, the quality of the weld is very important, so sometimes it is necessary to rule out the quality of the weld. We perform analyses to understand weld quality failures.
Contact information
Tel: +86-13392281699
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province

Recommendation

Online Inquiry

留言应用名称:
底部留言
描述:

LINK

Contact Us

Tel (wechat): 13336487288
Wechat:+86 13336487288

WhatsApp:+86 13336487288
Email: zty@usedpipemill.com

Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province

QRCODE

Copyright 0 2021 jinyujie. 粤ICP备13051810号 Powerby:  300.cn