Efficiency optimization of welding process of high frequency welded pipe production line(1)
- Sort:Information
- Auth:
- Source:
- Release time:2023-03-17 11:30
- Pvs:
【概要描述】The high-frequency welding process is the most widely used method for the production of welded pipes by high frequency welded pipe production line. It heats the metal by applying or inducing an electric current across the edge of the strip before the closing point of the open pipe, and presses the tube blank through squeeze rollers, The molten metal and inclusions are squeezed out of the weld pool to form a forged weld. But there is still a lot of room for improvement in this area. By designing and transforming the high-frequency welding process of the tube on the original basic configuration and operating it effectively, the welding process can be optimized, the welding efficiency can be improved, and the cost can be greatly reduced.
Efficiency optimization of welding process of high frequency welded pipe production line(1)
【概要描述】The high-frequency welding process is the most widely used method for the production of welded pipes by high frequency welded pipe production line. It heats the metal by applying or inducing an electric current across the edge of the strip before the closing point of the open pipe, and presses the tube blank through squeeze rollers, The molten metal and inclusions are squeezed out of the weld pool to form a forged weld. But there is still a lot of room for improvement in this area. By designing and transforming the high-frequency welding process of the tube on the original basic configuration and operating it effectively, the welding process can be optimized, the welding efficiency can be improved, and the cost can be greatly reduced.
- Sort:Information
- Auth:
- Source:
- Release time:2023-03-17 11:30
- Pvs:
The high-frequency welding process is the most widely used method for the production of welded pipes by high frequency welded pipe production line. It heats the metal by applying or inducing an electric current across the edge of the strip before the closing point of the open pipe, and presses the tube blank through squeeze rollers, The molten metal and inclusions are squeezed out of the weld pool to form a forged weld. But there is still a lot of room for improvement in this area. By designing and transforming the high-frequency welding process of the tube on the original basic configuration and operating it effectively, the welding process can be optimized, the welding efficiency can be improved, and the cost can be greatly reduced.
The factors that affect the efficient operation of the high frequency welded pipe production line mainly include: the edge state of the tube blank, the length and angle of the V angle, the position and length of the ferrite (magnetic bar), the position and length of the coil, the length of the opening angle, the type of impedance, the design of the coil and Welder frequency.
Reasonable configuration and design can greatly save electricity consumption, improve the quality of pipes and welds, reduce downtime and improve efficiency, and greatly reduce production costs.
Principle of high frequency welding
High frequency welding is a type of resistance welding (ERW). A current applied (high frequency contact)) or induced (high frequency induction) across the edge of the strip flows along the edge of the strip to the junction and rapidly heats the metal before the closing point of the open tube. By applying pressure to the squeeze rollers, the heated metal will contact and form a thermal diffusion joint. Huge pressure can push molten metal and inclusions out of the weld pool. Therefore, this weld is produced by forging, unlike most other welding processes, which are the result of casting. Forge welding is the strongest welded structure available. one.
The real difference between high frequency contact welding and high frequency induction welding is:
For contact welding, the current is applied directly to the edge of the strip through the contact head, while in induction welding, the current is induced by the magnetic flux surrounding the coil. Both methods have their own strengths and weaknesses, but overall, induction welding seams are smoother and more consistent, but relatively less efficient.
Reason for choosing high frequency
If welding with a 50Hz power frequency power supply, most of the current will only flow on the back of the tube, heating the entire tube. Current always chooses the path with the least impedance (not necessarily resistance). For direct current and low frequency alternating current, there is basically no difference between resistance and impedance. From a technical point of view, at low frequencies, the impedance is mainly determined by the resistive element. As the frequency increases, the magnetic field generated by the current begins to affect the impedance, and the inductive reactance becomes the dominant factor in determining the impedance.
The current paths along the edge of the strip to the apex and the auxiliary current paths around the tube act as inductors, and their inductance increases with the step frequency, but the effect of frequency on the circumferential current path is more significant.
Another reason for the higher frequency of high frequency welded pipe production line is that it is best to keep the size of the coil small enough during the induction welding process. The coil and the tube together form a transformer. The coil acts as the primary winding and the tube acts as the single-turn secondary winding. The amount of energy coupled through the transformer depends on the strength of the magnetic flux and its rate of change (frequency). The higher the frequency, the more flux required. few. This reduces the number of coil turns and reduces the current. If a pipe is to be welded at the industrial frequency of 50Hz, hundreds of turns of coil are required to deliver thousands of amps of current. Typical high frequency welding coils are typically 1 to 3 turns and carry several hundred amps of current.
Higher frequencies also affect the behavior of the current at the V corner. As the frequency increases, the current tends to concentrate on the edge of the strip. The reason for this phenomenon is, on the one hand, the "skin effect" (see Figure 2), which makes current flow on the surface of the conductor at a very high frequency; on the other hand, the "proximity effect" (see Figure 3), which makes Currents in adjacent conductors are concentrated on adjacent surfaces.
Both of these effects are caused by the distortion and interaction between the current and the magnetic field. The combined effect of the skin effect and proximity effect results in the use of less current to heat less metal, increasing efficiency.
Efficient welding operation
The main reason for the inefficiency of high frequency welded pipe production line is the incorrect placement of the coils and impedances (magnet bars). When current is applied (or induced) to the edge of the strip, the current will flow in two main paths. The current flowing along the edge of the strip to the apex of the V-corner heats the strip to the welding temperature. Electricity also tends to flow inside the open tube, heating the entire tube, but that doesn't help the welding process. In induction welding, both parts of the current flow on the outer surface of the tube, forming a loop. Be aware that all current flowing on the inner surface of the tube will flow back through the outer surface, causing double the energy loss. Energy is proportional to the square of the current, so a small increase in current will result in a large consumption of energy.
The current flowing along the V-angle and inside the tube depends on the impedance of these two paths. Shortening and narrowing the V-shaped region reduces impedance: while a longer V-shaped region increases energy conduction losses by increasing the time it takes for heat to travel from the edge to the surroundings. It is important to realize that the length of the V-zone has a greater effect on the width of the heat-affected zone than the welding frequency.
Both shrinking the induction coil and increasing the tube diameter can increase the impedance inside the tube. Placing an impedance resistor inside the tube can further increase the inside impedance. Ideally, the impedance can be raised to the point where most of the current flows in the V-shaped region, but this is not easy to achieve with small diameter tubes due to the limited space inside the tube where the resistor can be placed. The internal burr removal device also takes up space where the resistor ferrite can be placed.
More News

Time of issue : 2025-02-13
1.Equipment condition check
Appearance inspection: Check whether the equipment has obvious damage, rust or deformation.
Core component inspection: Focus on inspecting key components such as welding joints, transmission systems, and electrical systems to ensure that there is no serious wear or failure.
Operation test: Conduct trial operation to observe whether the equipment runs smoothly and whether the welding quality meets the requirements.
2.Equipment history
Service life: Understand the use time of the equipment, usually the longer the service life, the higher the risk of failure.
Maintenance records: Check the maintenance and repair records of the equipment to determine whether it is well maintained.
Working environment: Understand the working environment before the equipment, harsh environment may lead to increased equipment wear.
3.Technical parameters
Production capacity: Confirm whether the production capacity of the equipment meets the demand, including welding speed, pipe diameter range, etc.
Accuracy requirements: Check the welding accuracy of the equipment to ensure that it meets the production standard.
Compatibility: Confirm whether the equipment can be adapted to existing production lines or raw materials.
4.Brand and model
Brand reputation: Choose a well-known brand, usually the quality and after-sales service is more guaranteed.
Model suitability: Ensure that the model is suitable for current production needs and avoid insufficient or excessive functions.
5.Price evaluation
Market conditions: Understand the market price of the same type of equipment, to avoid too high or too low prices.
Cost performance: Considering the equipment condition, performance and price, choose cost-effective equipment.
6.After-sales service
Warranty Period: Confirm whether the equipment is under warranty, or whether the warranty can be extended.
Technical Support: Find out if the supplier provides technical support or repair services.
Accessories supply: Confirm that equipment accessories are easy to obtain to avoid the risk of stopping production.
7.Legal and Compliance
Equipment legitimacy: Ensure that the source of equipment is legitimate, avoid buying stolen goods or illegal equipment.
Compliance: Verify that the equipment meets local safety standards and environmental requirements.
8.Supplier reputation
Supplier background: Choose suppliers with good reputation to reduce the risk of purchase.
User Reviews: View other users' reviews of suppliers to understand their service quality and equipment condition.
9.Transportation and installation
Transportation costs: Consider the transportation costs of equipment, especially large equipment.
Installation and commissioning: Confirm whether the supplier provides installation and commissioning services to ensure the normal use of the equipment.
10.Contract Terms
Clear terms: Ensure that key information such as equipment condition, price, warranty period, etc. is clear in the contract.
Return Policy: Understand the return policy to avoid the inability to return if the equipment does not meet the requirements.
Summary
The purchase of second-hand pipe welding machine needs to consider the equipment status, history, technical parameters, price, after-sales service and other factors to ensure that the equipment meets the production demand and is cost-effective.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
1.Equipment condition check
Appearance inspection: Check whether the equipment has obvious damage, rust or deformation.
Core component inspection: Focus on inspecting key components such as welding joints, transmission systems, and electrical systems to ensure that there is no serious wear or failure.
Operation test: Conduct trial operation to observe whether the equipment runs smoothly and whether the welding quality meets the requirements.
2.Equipment history
Service life: Understand the use time of the equipment, usually the longer the service life, the higher the risk of failure.
Maintenance records: Check the maintenance and repair records of the equipment to determine whether it is well maintained.
Working environment: Understand the working environment before the equipment, harsh environment may lead to increased equipment wear.
3.Technical parameters
Production capacity: Confirm whether the production capacity of the equipment meets the demand, including welding speed, pipe diameter range, etc.
Accuracy requirements: Check the welding accuracy of the equipment to ensure that it meets the production standard.
Compatibility: Confirm whether the equipment can be adapted to existing production lines or raw materials.
4.Brand and model
Brand reputation: Choose a well-known brand, usually the quality and after-sales service is more guaranteed.
Model suitability: Ensure that the model is suitable for current production needs and avoid insufficient or excessive functions.
5.Price evaluation
Market conditions: Understand the market price of the same type of equipment, to avoid too high or too low prices.
Cost performance: Considering the equipment condition, performance and price, choose cost-effective equipment.
6.After-sales service
Warranty Period: Confirm whether the equipment is under warranty, or whether the warranty can be extended.
Technical Support: Find out if the supplier provides technical support or repair services.
Accessories supply: Confirm that equipment accessories are easy to obtain to avoid the risk of stopping production.
7.Legal and Compliance
Equipment legitimacy: Ensure that the source of equipment is legitimate, avoid buying stolen goods or illegal equipment.
Compliance: Verify that the equipment meets local safety standards and environmental requirements.
8.Supplier reputation
Supplier background: Choose suppliers with good reputation to reduce the risk of purchase.
User Reviews: View other users' reviews of suppliers to understand their service quality and equipment condition.
9.Transportation and installation
Transportation costs: Consider the transportation costs of equipment, especially large equipment.
Installation and commissioning: Confirm whether the supplier provides installation and commissioning services to ensure the normal use of the equipment.
10.Contract Terms
Clear terms: Ensure that key information such as equipment condition, price, warranty period, etc. is clear in the contract.
Return Policy: Understand the return policy to avoid the inability to return if the equipment does not meet the requirements.
Summary
The purchase of second-hand pipe welding machine needs to consider the equipment status, history, technical parameters, price, after-sales service and other factors to ensure that the equipment meets the production demand and is cost-effective.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

Time of issue : 2025-02-12
1. Material basis: Welded pipe as the skeleton material of furniture
Structural support: Steel pipes made of welded pipes are often used in the frame structure of furniture, such as chair legs, table supports, bed frames, bookshelves, etc. Its high strength and stability can withstand large loads.
Lightweight design: Compared with solid steel, welded pipe is lightweight and low cost, suitable for furniture requiring portability or simple design (such as outdoor folding tables and chairs).
2. Design flexibility
Diversified modeling: Welded pipes can be processed into complex shapes through bending, cutting, welding and other processes to meet the curve or geometric design needs of modern furniture (such as streamlined bar chairs, creative shelves).
Industrial style: The exposed metal welded pipe structure is the iconic element of industrial furniture, often used in cafes, LOFT Spaces and other scenes.
3. Functionality and durability
Outdoor furniture: Galvanized welded pipes or steel pipes treated with anti-rust are often used in outdoor furniture (such as garden tables and chairs, balcony guardrail), with strong weather resistance.
Load-bearing requirements: The high strength characteristics of welded pipes are suitable for the production of storage shelves, shelves and other furniture requiring high load-bearing.
4. Production process coordination
Mass production: The efficient production mode of welded pipe mechanism is matched with the large-scale demand of furniture manufacturing, reducing raw material costs.
Customized processing: Furniture factories can customize welded pipes of different specifications (such as diameter and wall thickness) according to design requirements to improve product adaptability.
5. Environmental Protection and Sustainability
Material recycling: Steel can be recycled, in line with the design concept of environmentally friendly furniture.
Surface treatment: Spraying, painting and other processes can improve the beauty and durability of welded pipe furniture, while reducing the environmental burden.
6. Market trends
Modular furniture: The standardized interface of welded pipe structure is easy to assemble and disassemble, catering to the popular trend of modular furniture.
Cross-border combination: Welded pipes are often combined with wood, glass, plastic and other materials to create a mixed-match style (such as metal + wood dining tables).
Typical Application Case
Office furniture: Steel desk bracket, conference chair frame.
Home Decoration: Metal bookshelf, coat rack, lamp stand.
Public Facilities: Park benches, shopping mall display shelves.
Summary
The welded pipe mechanism provides the furniture industry with an economical, durable and flexible material solution that drives innovation in the function, aesthetics and sustainability of modern furniture. Its combination with furniture is not only an extension of industrial technology, but also an expansion of design language.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
1. Material basis: Welded pipe as the skeleton material of furniture
Structural support: Steel pipes made of welded pipes are often used in the frame structure of furniture, such as chair legs, table supports, bed frames, bookshelves, etc. Its high strength and stability can withstand large loads.
Lightweight design: Compared with solid steel, welded pipe is lightweight and low cost, suitable for furniture requiring portability or simple design (such as outdoor folding tables and chairs).
2. Design flexibility
Diversified modeling: Welded pipes can be processed into complex shapes through bending, cutting, welding and other processes to meet the curve or geometric design needs of modern furniture (such as streamlined bar chairs, creative shelves).
Industrial style: The exposed metal welded pipe structure is the iconic element of industrial furniture, often used in cafes, LOFT Spaces and other scenes.
3. Functionality and durability
Outdoor furniture: Galvanized welded pipes or steel pipes treated with anti-rust are often used in outdoor furniture (such as garden tables and chairs, balcony guardrail), with strong weather resistance.
Load-bearing requirements: The high strength characteristics of welded pipes are suitable for the production of storage shelves, shelves and other furniture requiring high load-bearing.
4. Production process coordination
Mass production: The efficient production mode of welded pipe mechanism is matched with the large-scale demand of furniture manufacturing, reducing raw material costs.
Customized processing: Furniture factories can customize welded pipes of different specifications (such as diameter and wall thickness) according to design requirements to improve product adaptability.
5. Environmental Protection and Sustainability
Material recycling: Steel can be recycled, in line with the design concept of environmentally friendly furniture.
Surface treatment: Spraying, painting and other processes can improve the beauty and durability of welded pipe furniture, while reducing the environmental burden.
6. Market trends
Modular furniture: The standardized interface of welded pipe structure is easy to assemble and disassemble, catering to the popular trend of modular furniture.
Cross-border combination: Welded pipes are often combined with wood, glass, plastic and other materials to create a mixed-match style (such as metal + wood dining tables).
Typical Application Case
Office furniture: Steel desk bracket, conference chair frame.
Home Decoration: Metal bookshelf, coat rack, lamp stand.
Public Facilities: Park benches, shopping mall display shelves.
Summary
The welded pipe mechanism provides the furniture industry with an economical, durable and flexible material solution that drives innovation in the function, aesthetics and sustainability of modern furniture. Its combination with furniture is not only an extension of industrial technology, but also an expansion of design language.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

Time of issue : 2025-02-11
1. The characteristics of high-precision steel pipe
High dimensional accuracy: small outer diameter, wall thickness tolerance (usually up to ±0.05mm), low ellipticity.
Excellent surface quality: smooth weld without burrs, surface finish Ra≤0.8μm.
Stable mechanical properties: weld strength close to the base material, uniform compressive/tensile properties.
Applicable materials: stainless steel (304/316L), carbon steel, alloy steel (such as API series), etc.
2. Core production process
(1) Type of pipe welding machine
High-frequency welding (HFW) : high efficiency, suitable for medium thin wall pipe (Φ10~Φ600mm), need to cooperate with precision forming unit.
Laser welding: small heat affected zone, narrow weld (0.1~0.3mm), suitable for ultra-thin walls (such as 0.3mm) or special alloys.
TIG welding: For high alloy steel or thick wall pipe, higher weld purity.
(2) Key process links
Forming process: multi-roll continuous cold forming, dynamic adjustment of roll parameters to compensate for rebound.
Welding control:
High frequency welding: precise control of current frequency (100~400kHz) and extrusion amount.
Laser welding: focus position accuracy ±0.05mm, real-time depth monitoring (such as CCD vision).
Online detection:
Eddy current inspection (ET) : Detection of surface cracks.
Ultrasonic inspection (UT) : detection of internal defects (sensitivity Φ0.5mm equivalent flat hole).
Laser caliper: Outer diameter closed loop control (accuracy ±0.01mm).
3. Post-processing technology
Heat treatment: bright annealing (hydrogen nitrogen protection atmosphere) to eliminate stress, hardness fluctuation ≤3HRC.
Straightening: multi-roll precision straightening, straightness ≤0.5mm/m.
Surface treatment:
Electrolytic polishing (EP) : For medical/food grade stainless steel tubes, Ra up to 0.2μm.
Coating: hot dip galvanizing (zinc layer ≥80μm) or electroless nickel plating (uniform thickness ±2μm).
4. Typical application areas
Automobile manufacturing: fuel injection pipe (tolerance ±0.03mm), hydraulic pipe.
Semiconductor equipment: Ultra-high clean gas delivery pipe (inner wall EP treatment, particle ≤Class 5).
Medical instruments: endoscopic catheter (Φ1~5mm, wall thickness 0.1mm).
Energy industry: Instrument tubes for nuclear power plants (SA213-TP347H material, intergranular corrosion test passed).
5. Quality control standards
International standard:
ASTM A269 (Universal Seamless and Welded Austenitic Stainless Steel Pipe)
EN 10305-4 (Precision welded pipes for hydraulic systems)
Industry certification: ISO 9001, PED 2014/68/EU (Pressure Equipment Directive).
6. Technological trends
Intelligent production: AI algorithm optimizes welding parameters, and the yield is increased to more than 99.5%.
Composite process: laser + arc composite welding, both efficiency and quality (speed increased by 30%).
Green manufacturing: low energy high frequency power supply (efficiency ≥90%), waste acid recovery ≥95%.
Through the above process optimization and strict quality control, the high-precision steel pipe produced by the pipe welding machine can meet the demanding requirements of size, performance and reliability in high-end industrial fields. In actual production, the process route needs to be customized according to the material characteristics and uses, for example, medical tubes need to undergo additional passivation treatment and biocompatibility testing.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
1. The characteristics of high-precision steel pipe
High dimensional accuracy: small outer diameter, wall thickness tolerance (usually up to ±0.05mm), low ellipticity.
Excellent surface quality: smooth weld without burrs, surface finish Ra≤0.8μm.
Stable mechanical properties: weld strength close to the base material, uniform compressive/tensile properties.
Applicable materials: stainless steel (304/316L), carbon steel, alloy steel (such as API series), etc.
2. Core production process
(1) Type of pipe welding machine
High-frequency welding (HFW) : high efficiency, suitable for medium thin wall pipe (Φ10~Φ600mm), need to cooperate with precision forming unit.
Laser welding: small heat affected zone, narrow weld (0.1~0.3mm), suitable for ultra-thin walls (such as 0.3mm) or special alloys.
TIG welding: For high alloy steel or thick wall pipe, higher weld purity.
(2) Key process links
Forming process: multi-roll continuous cold forming, dynamic adjustment of roll parameters to compensate for rebound.
Welding control:
High frequency welding: precise control of current frequency (100~400kHz) and extrusion amount.
Laser welding: focus position accuracy ±0.05mm, real-time depth monitoring (such as CCD vision).
Online detection:
Eddy current inspection (ET) : Detection of surface cracks.
Ultrasonic inspection (UT) : detection of internal defects (sensitivity Φ0.5mm equivalent flat hole).
Laser caliper: Outer diameter closed loop control (accuracy ±0.01mm).
3. Post-processing technology
Heat treatment: bright annealing (hydrogen nitrogen protection atmosphere) to eliminate stress, hardness fluctuation ≤3HRC.
Straightening: multi-roll precision straightening, straightness ≤0.5mm/m.
Surface treatment:
Electrolytic polishing (EP) : For medical/food grade stainless steel tubes, Ra up to 0.2μm.
Coating: hot dip galvanizing (zinc layer ≥80μm) or electroless nickel plating (uniform thickness ±2μm).
4. Typical application areas
Automobile manufacturing: fuel injection pipe (tolerance ±0.03mm), hydraulic pipe.
Semiconductor equipment: Ultra-high clean gas delivery pipe (inner wall EP treatment, particle ≤Class 5).
Medical instruments: endoscopic catheter (Φ1~5mm, wall thickness 0.1mm).
Energy industry: Instrument tubes for nuclear power plants (SA213-TP347H material, intergranular corrosion test passed).
5. Quality control standards
International standard:
ASTM A269 (Universal Seamless and Welded Austenitic Stainless Steel Pipe)
EN 10305-4 (Precision welded pipes for hydraulic systems)
Industry certification: ISO 9001, PED 2014/68/EU (Pressure Equipment Directive).
6. Technological trends
Intelligent production: AI algorithm optimizes welding parameters, and the yield is increased to more than 99.5%.
Composite process: laser + arc composite welding, both efficiency and quality (speed increased by 30%).
Green manufacturing: low energy high frequency power supply (efficiency ≥90%), waste acid recovery ≥95%.
Through the above process optimization and strict quality control, the high-precision steel pipe produced by the pipe welding machine can meet the demanding requirements of size, performance and reliability in high-end industrial fields. In actual production, the process route needs to be customized according to the material characteristics and uses, for example, medical tubes need to undergo additional passivation treatment and biocompatibility testing.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

Time of issue : 2025-02-08
1.The role of pipe welding machine in the manufacture of automobile frame
Pipe production: The welding pipe machine is used to manufacture high-precision welded steel pipes, which constitute the longitudinal beams, beams, anti-collision beams and other key components of the automobile frame. High frequency welding (HFW) or laser welding technology can produce steel pipes with uniform wall thickness and strength of more than 800MPa to meet the needs of lightweight.
Customized processing: Through flexible forming technology, the welding machine can produce special-shaped cross section pipes (such as rectangular, trapezoidal), adapt to the topology optimization design of different models of frames, improve space utilization and impact energy absorption efficiency.
2.The core requirements of the welding pipe process for automobile frames
Material properties: DP600/DP800 duplex steel or 22MnB5 thermoforming steel should be used, and online heat treatment (such as induction annealing) should be carried out after welding to ensure the microstructure consistency between the weld zone and the base material and avoid HAZ (heat affected zone) softening.
Dimensional accuracy: Diameter tolerance should be controlled within ±0.2mm, ellipticity ≤0.5%, to ensure the matching accuracy of the assembly and stamping parts (clearance <0.5mm).
3.Key technology breakthrough point
Laser-MAG composite welding: the penetration depth can reach 8mm, the welding speed is increased to 6m/min, the heat input is reduced by 30%, and the welding deformation of the frame is significantly reduced (≤1.5mm/m).
Online quality monitoring: high-speed CCD vision system (sampling rate 2000fps) with eddy current detection, to achieve real-time detection of weld defects, miss rate <0.01%.
4.Cost-performance balance
Compared with the stamping and welding structure, the welded pipe frame can reduce the weight by 15-20%, the material utilization rate is increased to 95%, and the manufacturing cost of the bicycle is reduced by about 1200 yuan. However, it is necessary to increase the investment in roller forming molds (about 2 million yuan/set).
5.Industry Application Cases
- An independent brand pure level station adopts 3D variable cross-section welded pipe subframe, with torsional rigidity increased to 27000Nm/°, 40% higher than the traditional structure, and the battery pack space utilization increased by 12%.
Conclusion
The penetration rate of welded pipe technology in the field of automotive frames is growing at a rate of 8% per year, and future development directions include:
Intelligent welded pipe system (digital twin model real-time control molding parameters)
Magnesium alloy /CFRP composite pipe welding process
Topological optimization driven continuous forming technology for variable thickness pipes
It is recommended to pay attention to the update of the ISO 15614 standard and the latest certification requirements for automotive welded pipe processes in ASME BPVC Section IX to ensure technical compliance.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
1.The role of pipe welding machine in the manufacture of automobile frame
Pipe production: The welding pipe machine is used to manufacture high-precision welded steel pipes, which constitute the longitudinal beams, beams, anti-collision beams and other key components of the automobile frame. High frequency welding (HFW) or laser welding technology can produce steel pipes with uniform wall thickness and strength of more than 800MPa to meet the needs of lightweight.
Customized processing: Through flexible forming technology, the welding machine can produce special-shaped cross section pipes (such as rectangular, trapezoidal), adapt to the topology optimization design of different models of frames, improve space utilization and impact energy absorption efficiency.
2.The core requirements of the welding pipe process for automobile frames
Material properties: DP600/DP800 duplex steel or 22MnB5 thermoforming steel should be used, and online heat treatment (such as induction annealing) should be carried out after welding to ensure the microstructure consistency between the weld zone and the base material and avoid HAZ (heat affected zone) softening.
Dimensional accuracy: Diameter tolerance should be controlled within ±0.2mm, ellipticity ≤0.5%, to ensure the matching accuracy of the assembly and stamping parts (clearance <0.5mm).
3.Key technology breakthrough point
Laser-MAG composite welding: the penetration depth can reach 8mm, the welding speed is increased to 6m/min, the heat input is reduced by 30%, and the welding deformation of the frame is significantly reduced (≤1.5mm/m).
Online quality monitoring: high-speed CCD vision system (sampling rate 2000fps) with eddy current detection, to achieve real-time detection of weld defects, miss rate <0.01%.
4.Cost-performance balance
Compared with the stamping and welding structure, the welded pipe frame can reduce the weight by 15-20%, the material utilization rate is increased to 95%, and the manufacturing cost of the bicycle is reduced by about 1200 yuan. However, it is necessary to increase the investment in roller forming molds (about 2 million yuan/set).
5.Industry Application Cases
- An independent brand pure level station adopts 3D variable cross-section welded pipe subframe, with torsional rigidity increased to 27000Nm/°, 40% higher than the traditional structure, and the battery pack space utilization increased by 12%.
Conclusion
The penetration rate of welded pipe technology in the field of automotive frames is growing at a rate of 8% per year, and future development directions include:
Intelligent welded pipe system (digital twin model real-time control molding parameters)
Magnesium alloy /CFRP composite pipe welding process
Topological optimization driven continuous forming technology for variable thickness pipes
It is recommended to pay attention to the update of the ISO 15614 standard and the latest certification requirements for automotive welded pipe processes in ASME BPVC Section IX to ensure technical compliance.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com
JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province
Recommendation
Online Inquiry
LINK
Contact Us
Tel (wechat): 13336487288
Wechat:+86 13336487288
WhatsApp:+86 13336487288
Email: zty@usedpipemill.com
Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province
