MENU

/
/
Efficiency optimization of welding process of high frequency welded pipe production line(1)

Efficiency optimization of welding process of high frequency welded pipe production line(1)

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-03-17 11:30
  • Pvs:

【概要描述】The high-frequency welding process is the most widely used method for the production of welded pipes by high frequency welded pipe production line. It heats the metal by applying or inducing an electric current across the edge of the strip before the closing point of the open pipe, and presses the tube blank through squeeze rollers, The molten metal and inclusions are squeezed out of the weld pool to form a forged weld. But there is still a lot of room for improvement in this area. By designing and transforming the high-frequency welding process of the tube on the original basic configuration and operating it effectively, the welding process can be optimized, the welding efficiency can be improved, and the cost can be greatly reduced.

Efficiency optimization of welding process of high frequency welded pipe production line(1)

【概要描述】The high-frequency welding process is the most widely used method for the production of welded pipes by high frequency welded pipe production line. It heats the metal by applying or inducing an electric current across the edge of the strip before the closing point of the open pipe, and presses the tube blank through squeeze rollers, The molten metal and inclusions are squeezed out of the weld pool to form a forged weld. But there is still a lot of room for improvement in this area. By designing and transforming the high-frequency welding process of the tube on the original basic configuration and operating it effectively, the welding process can be optimized, the welding efficiency can be improved, and the cost can be greatly reduced.

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2023-03-17 11:30
  • Pvs:
Detail

The high-frequency welding process is the most widely used method for the production of welded pipes by high frequency welded pipe production line. It heats the metal by applying or inducing an electric current across the edge of the strip before the closing point of the open pipe, and presses the tube blank through squeeze rollers, The molten metal and inclusions are squeezed out of the weld pool to form a forged weld. But there is still a lot of room for improvement in this area. By designing and transforming the high-frequency welding process of the tube on the original basic configuration and operating it effectively, the welding process can be optimized, the welding efficiency can be improved, and the cost can be greatly reduced.

 

The factors that affect the efficient operation of the high frequency welded pipe production line mainly include: the edge state of the tube blank, the length and angle of the V angle, the position and length of the ferrite (magnetic bar), the position and length of the coil, the length of the opening angle, the type of impedance, the design of the coil and Welder frequency.

Reasonable configuration and design can greatly save electricity consumption, improve the quality of pipes and welds, reduce downtime and improve efficiency, and greatly reduce production costs.

 

Principle of high frequency welding

High frequency welding is a type of resistance welding (ERW). A current applied (high frequency contact)) or induced (high frequency induction) across the edge of the strip flows along the edge of the strip to the junction and rapidly heats the metal before the closing point of the open tube. By applying pressure to the squeeze rollers, the heated metal will contact and form a thermal diffusion joint. Huge pressure can push molten metal and inclusions out of the weld pool. Therefore, this weld is produced by forging, unlike most other welding processes, which are the result of casting. Forge welding is the strongest welded structure available. one.

 

The real difference between high frequency contact welding and high frequency induction welding is:

For contact welding, the current is applied directly to the edge of the strip through the contact head, while in induction welding, the current is induced by the magnetic flux surrounding the coil. Both methods have their own strengths and weaknesses, but overall, induction welding seams are smoother and more consistent, but relatively less efficient.

 

Reason for choosing high frequency

If welding with a 50Hz power frequency power supply, most of the current will only flow on the back of the tube, heating the entire tube. Current always chooses the path with the least impedance (not necessarily resistance). For direct current and low frequency alternating current, there is basically no difference between resistance and impedance. From a technical point of view, at low frequencies, the impedance is mainly determined by the resistive element. As the frequency increases, the magnetic field generated by the current begins to affect the impedance, and the inductive reactance becomes the dominant factor in determining the impedance.

 

The current paths along the edge of the strip to the apex and the auxiliary current paths around the tube act as inductors, and their inductance increases with the step frequency, but the effect of frequency on the circumferential current path is more significant.

 

Another reason for the higher frequency of high frequency welded pipe production line is that it is best to keep the size of the coil small enough during the induction welding process. The coil and the tube together form a transformer. The coil acts as the primary winding and the tube acts as the single-turn secondary winding. The amount of energy coupled through the transformer depends on the strength of the magnetic flux and its rate of change (frequency). The higher the frequency, the more flux required. few. This reduces the number of coil turns and reduces the current. If a pipe is to be welded at the industrial frequency of 50Hz, hundreds of turns of coil are required to deliver thousands of amps of current. Typical high frequency welding coils are typically 1 to 3 turns and carry several hundred amps of current.

 

Higher frequencies also affect the behavior of the current at the V corner. As the frequency increases, the current tends to concentrate on the edge of the strip. The reason for this phenomenon is, on the one hand, the "skin effect" (see Figure 2), which makes current flow on the surface of the conductor at a very high frequency; on the other hand, the "proximity effect" (see Figure 3), which makes Currents in adjacent conductors are concentrated on adjacent surfaces.

 

High frequency welded pipe production line

 

High frequency welded pipe production line

 

Both of these effects are caused by the distortion and interaction between the current and the magnetic field. The combined effect of the skin effect and proximity effect results in the use of less current to heat less metal, increasing efficiency.

 

Efficient welding operation

The main reason for the inefficiency of high frequency welded pipe production line is the incorrect placement of the coils and impedances (magnet bars). When current is applied (or induced) to the edge of the strip, the current will flow in two main paths. The current flowing along the edge of the strip to the apex of the V-corner heats the strip to the welding temperature. Electricity also tends to flow inside the open tube, heating the entire tube, but that doesn't help the welding process. In induction welding, both parts of the current flow on the outer surface of the tube, forming a loop. Be aware that all current flowing on the inner surface of the tube will flow back through the outer surface, causing double the energy loss. Energy is proportional to the square of the current, so a small increase in current will result in a large consumption of energy.

 

The current flowing along the V-angle and inside the tube depends on the impedance of these two paths. Shortening and narrowing the V-shaped region reduces impedance: while a longer V-shaped region increases energy conduction losses by increasing the time it takes for heat to travel from the edge to the surroundings. It is important to realize that the length of the V-zone has a greater effect on the width of the heat-affected zone than the welding frequency.

 

Both shrinking the induction coil and increasing the tube diameter can increase the impedance inside the tube. Placing an impedance resistor inside the tube can further increase the inside impedance. Ideally, the impedance can be raised to the point where most of the current flows in the V-shaped region, but this is not easy to achieve with small diameter tubes due to the limited space inside the tube where the resistor can be placed. The internal burr removal device also takes up space where the resistor ferrite can be placed.

关键词:

More News

Analysis of seven key factors affecting the effective power output of second-hand high-frequency welded pipe machines
Analysis of seven key factors affecting the effective power output of second-hand high-frequency welded pipe machines
Product feature introduction
High frequency welded pipe machine is widely used in modern industry, especially in the pipe manufacturing industry. It is highly favored by users for its high efficiency and precision. In order to better understand and master this technology, this article will use the keyword "second-hand welded pipe machine" and combine it with practical applications to analyze the seven key factors of its effective power output.
Firstly, we need to clarify the definition of 'second-hand welded pipe machine'. Second hand welded pipe machine refers to equipment that has been used but has been repaired and debugged before being put back into use. Due to its newer production technology and lower purchasing costs, it has become an ideal choice for many small and medium-sized enterprises. However, understanding the influencing factors of power output issues that arise during use, especially in high-frequency and high-intensity operating environments, is crucial.


1. The aging degree of the equipment itself: The components of the second-hand welding pipe machine will wear and age to varying degrees over time, which directly affects the stability of its power output. The maintenance and regular inspection of equipment can reduce this impact.
2. Operating environment: Factors such as humidity, temperature, and electromagnetic interference also have a significant impact on the operation of second-hand welded pipe machines. Maintaining a good working environment is crucial for the effective power output of equipment.
3. Debugging and Calibration: Before the second-hand welded pipe machine is put back into use, it needs to undergo strict debugging and calibration to ensure that all parameters reach their optimal state. This has a significant impact on the stability and power output of the device.
4. Operational skills: Proficient operational skills are the key to ensuring the efficient operation of second-hand welded pipe machines. Familiar with device characteristics and able to flexibly adjust operating parameters can significantly improve power output efficiency.
5. Power quality: Unstable power supply can cause fluctuations in the power output of second-hand welded pipe machines. The use of high-quality power equipment to ensure stable voltage and current is the foundation for ensuring the normal operation of the equipment.
6. Maintenance: Regular maintenance can effectively extend the service life of second-hand welded pipe machines and help stabilize power output. During maintenance, key parts such as welding joints, cooling systems, and electrical components should be carefully inspected.
7. Load adaptability: The power output of a second-hand welded pipe machine is not only affected by the equipment itself, but also by its matching with the load. Appropriate load distribution and reasonable production scheduling can comprehensively improve the operational efficiency of equipment.
In summary, a comprehensive understanding and mastery of the seven key factors mentioned above can significantly improve the effective power output of second-hand high-frequency welded pipe machines, extend equipment life, and lay a solid foundation for enterprises to save costs and improve production efficiency. Mastering these key points will undoubtedly result in twice the result with half the effort when choosing and using a second-hand welded pipe machine.



For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

 

Detail
Product feature introduction
High frequency welded pipe machine is widely used in modern industry, especially in the pipe manufacturing industry. It is highly favored by users for its high efficiency and precision. In order to better understand and master this technology, this article will use the keyword "second-hand welded pipe machine" and combine it with practical applications to analyze the seven key factors of its effective power output.
Firstly, we need to clarify the definition of 'second-hand welded pipe machine'. Second hand welded pipe machine refers to equipment that has been used but has been repaired and debugged before being put back into use. Due to its newer production technology and lower purchasing costs, it has become an ideal choice for many small and medium-sized enterprises. However, understanding the influencing factors of power output issues that arise during use, especially in high-frequency and high-intensity operating environments, is crucial.


1. The aging degree of the equipment itself: The components of the second-hand welding pipe machine will wear and age to varying degrees over time, which directly affects the stability of its power output. The maintenance and regular inspection of equipment can reduce this impact.
2. Operating environment: Factors such as humidity, temperature, and electromagnetic interference also have a significant impact on the operation of second-hand welded pipe machines. Maintaining a good working environment is crucial for the effective power output of equipment.
3. Debugging and Calibration: Before the second-hand welded pipe machine is put back into use, it needs to undergo strict debugging and calibration to ensure that all parameters reach their optimal state. This has a significant impact on the stability and power output of the device.
4. Operational skills: Proficient operational skills are the key to ensuring the efficient operation of second-hand welded pipe machines. Familiar with device characteristics and able to flexibly adjust operating parameters can significantly improve power output efficiency.
5. Power quality: Unstable power supply can cause fluctuations in the power output of second-hand welded pipe machines. The use of high-quality power equipment to ensure stable voltage and current is the foundation for ensuring the normal operation of the equipment.
6. Maintenance: Regular maintenance can effectively extend the service life of second-hand welded pipe machines and help stabilize power output. During maintenance, key parts such as welding joints, cooling systems, and electrical components should be carefully inspected.
7. Load adaptability: The power output of a second-hand welded pipe machine is not only affected by the equipment itself, but also by its matching with the load. Appropriate load distribution and reasonable production scheduling can comprehensively improve the operational efficiency of equipment.
In summary, a comprehensive understanding and mastery of the seven key factors mentioned above can significantly improve the effective power output of second-hand high-frequency welded pipe machines, extend equipment life, and lay a solid foundation for enterprises to save costs and improve production efficiency. Mastering these key points will undoubtedly result in twice the result with half the effort when choosing and using a second-hand welded pipe machine.



For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

 

Analysis of the problem of non squareness in the adjustment of square and rectangular tubes and the method of correcting vertical rollers
Analysis of the problem of non squareness in the adjustment of square and rectangular tubes and the method of correcting vertical rollers
In the field of industrial manufacturing, second-hand welded pipe machines have gradually become important equipment in enterprise production due to their significant characteristics of affordability and multifunctionality. This article will focus on introducing the unique selling points of second-hand square tube machines, and explore the common problem of "non squareness" in the production process of square and rectangular tubes, as well as the method of correction through vertical rollers.
Product feature introduction


Economical and cost-effective
Firstly, the price of second-hand welded pipe machines is relatively low, which is their most intuitive advantage. For small and medium-sized enterprises, purchasing second-hand equipment can effectively reduce initial investment costs while ensuring the basic functions and production efficiency of the equipment. This makes second-hand square tube machines highly competitive and cost-effective in the market.
Multi functional and easy to maintain
Another major selling point of second-hand welded pipe machines is their versatility. After appropriate adjustments and maintenance, these machines can produce steel pipes of different specifications and shapes to meet diverse market demands. In addition, the maintenance cost of second-hand equipment is usually lower because at the time of purchase, suppliers often provide detailed usage records and maintenance guidelines for the equipment, making it easier for users to perform daily maintenance and repair minor faults.
The issue of 'non square' in the adjustment process
In the process of using a second-hand square tube machine to produce square and rectangular tubes, a common problem is the phenomenon of "square and rectangular tubes not being square". Specifically, this means that the produced square or rectangular pipes have uneven edges, angles, or lengths on each side, which can affect the quality and aesthetics of the product. The main reasons for this problem are improper machine tool parameter settings, roller wear, and differences in material quality.
Correction method of vertical roller
In order to solve the problem of "non square", the use of standing rollers is particularly important. Vertical roller is a tool used to adjust the shape of pipes. By setting the pressure and position of the vertical roller reasonably, the formed square tube can be calibrated to meet the standard requirements in terms of appearance. In the specific operation, the staff need to gradually adjust the angle and force of the vertical roller according to the actual deviation of the square tube, until the various dimensions of the square tube meet the standards.
Application scenarios and instance analysis
The second-hand welded pipe machine is not only suitable for standardized production, but also meets personalized customization needs. Taking construction sites and pipeline installation projects as examples, these fields often require steel pipes of different sizes and shapes. By adjusting the vertical rollers, the second-hand welded pipe machine can quickly produce square and rectangular pipes that meet specific requirements, greatly improving production efficiency and product quality.
Overall, second-hand square tube machines have become an ideal choice in the market due to their affordability, versatility, and ease of maintenance. By setting up and using vertical rollers reasonably, it is possible to effectively address the issue of "non square" in production and ensure product quality. These unique selling points not only make second-hand welded pipe machines shine in industrial manufacturing, but also bring significant economic benefits to enterprises.



For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

 

Detail
In the field of industrial manufacturing, second-hand welded pipe machines have gradually become important equipment in enterprise production due to their significant characteristics of affordability and multifunctionality. This article will focus on introducing the unique selling points of second-hand square tube machines, and explore the common problem of "non squareness" in the production process of square and rectangular tubes, as well as the method of correction through vertical rollers.
Product feature introduction


Economical and cost-effective
Firstly, the price of second-hand welded pipe machines is relatively low, which is their most intuitive advantage. For small and medium-sized enterprises, purchasing second-hand equipment can effectively reduce initial investment costs while ensuring the basic functions and production efficiency of the equipment. This makes second-hand square tube machines highly competitive and cost-effective in the market.
Multi functional and easy to maintain
Another major selling point of second-hand welded pipe machines is their versatility. After appropriate adjustments and maintenance, these machines can produce steel pipes of different specifications and shapes to meet diverse market demands. In addition, the maintenance cost of second-hand equipment is usually lower because at the time of purchase, suppliers often provide detailed usage records and maintenance guidelines for the equipment, making it easier for users to perform daily maintenance and repair minor faults.
The issue of 'non square' in the adjustment process
In the process of using a second-hand square tube machine to produce square and rectangular tubes, a common problem is the phenomenon of "square and rectangular tubes not being square". Specifically, this means that the produced square or rectangular pipes have uneven edges, angles, or lengths on each side, which can affect the quality and aesthetics of the product. The main reasons for this problem are improper machine tool parameter settings, roller wear, and differences in material quality.
Correction method of vertical roller
In order to solve the problem of "non square", the use of standing rollers is particularly important. Vertical roller is a tool used to adjust the shape of pipes. By setting the pressure and position of the vertical roller reasonably, the formed square tube can be calibrated to meet the standard requirements in terms of appearance. In the specific operation, the staff need to gradually adjust the angle and force of the vertical roller according to the actual deviation of the square tube, until the various dimensions of the square tube meet the standards.
Application scenarios and instance analysis
The second-hand welded pipe machine is not only suitable for standardized production, but also meets personalized customization needs. Taking construction sites and pipeline installation projects as examples, these fields often require steel pipes of different sizes and shapes. By adjusting the vertical rollers, the second-hand welded pipe machine can quickly produce square and rectangular pipes that meet specific requirements, greatly improving production efficiency and product quality.
Overall, second-hand square tube machines have become an ideal choice in the market due to their affordability, versatility, and ease of maintenance. By setting up and using vertical rollers reasonably, it is possible to effectively address the issue of "non square" in production and ensure product quality. These unique selling points not only make second-hand welded pipe machines shine in industrial manufacturing, but also bring significant economic benefits to enterprises.



For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill

 

Analysis of the problem of non squareness in the adjustment of square and rectangular tubes by second-hand square tube machines and the method of correcting vertical rollers
Analysis of the problem of non squareness in the adjustment of square and rectangular tubes by second-hand square tube machines and the method of correcting vertical rollers
Innovation of intelligent heat treatment for welds: detailed explanation of online quenching+tempering (Q+T) technology
Innovation of intelligent heat treatment for welds: detailed explanation of online quenching+tempering (Q+T) technology
Contact information
Tel: +86-13392281699
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province

Recommendation

Online Inquiry

留言应用名称:
底部留言
描述:

LINK

Contact Us

Tel (wechat): 13336487288
Wechat:+86 13336487288

WhatsApp:+86 13336487288
Email: zty@usedpipemill.com

Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province

QRCODE

Copyright 0 2021 jinyujie. 粤ICP备13051810号 Powerby:  300.cn