MENU

/
/
Common faults of used welded pipe mills production line forming machines (1)

Common faults of used welded pipe mills production line forming machines (1)

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2022-12-18 11:30
  • Pvs:

【概要描述】Common faults of used welded pipe mills production line forming machines can be divided into ① deviation. ② scratches. ③ "indenter" phenomenon. ④ "drill belt" phenomenon. In order to let everyone understand the common faults of the molding machine in detail, we will introduce ① deviation.

Common faults of used welded pipe mills production line forming machines (1)

【概要描述】Common faults of used welded pipe mills production line forming machines can be divided into ① deviation. ② scratches. ③ "indenter" phenomenon. ④ "drill belt" phenomenon. In order to let everyone understand the common faults of the molding machine in detail, we will introduce ① deviation.

  • Sort:Information
  • Auth:
  • Source:
  • Release time:2022-12-18 11:30
  • Pvs:
Detail

Common faults of used welded pipe mills production line forming machines can be divided into ① deviation. ② scratches. ③ "indenter" phenomenon. ④ "drill belt" phenomenon. In order to let everyone understand the common faults of the molding machine in detail, we will introduce ① deviation.

 

The deviation is also called turning over the belt. Due to various reasons, the deviation will occur at any time between the rolls of the forming machine. The specific performance is that after the tube blank comes out of the flat roll or vertical roll, the heights of the two edges are different. In severe cases, the tube blank will turn over and cannot enter the next pass smoothly, so it is forced to stop processing, which directly affects the production. Increase in work rate. However, there are two reasons for the deviation of the forming machine of the used welded pipe mills production line, that is, the deviation of the flat roll and the deviation of the vertical roll. We will introduce them in detail according to these two reasons.

 

1.1 Analysis of the cause of the deviation of the flat roller

The deviation of the flat roll is mainly caused by the following reasons (excluding the defects such as the camber of the raw material).

 

(1) The center of the hole pattern is not correct.

When the position of the center of the pass is not correct, the tube blank will deviate from the rolling center line during the rolling process and deviate. When the deformation angle of the pass is greater than 90°, and the center of the pass of the upper and lower rolls is not aligned, the tube blank will be turned up in the direction of the deviation of the center of the pass, as shown in Figure 8(a); when the center of the pass of the lower roll is not aligned, The tube blank will also be turned up in the direction of deviation from the center of the pass, as shown in Figure 8(b); when the center of the upper roll pass is not aligned, the tube blank will be turned up in the opposite direction, as shown in Figure 8(c). If the deformation angle of the tube blank is less than 90°, except when the upper and lower hole patterns are displaced as a whole, which is opposite to the deformation greater than 90° (as shown in Figure 9), the rest are in the same direction as the same type of offset. This is a specific manifestation of the deviation of the tube blank caused by the irregular center of the pass after several axial displacements of the roll. During the treatment, according to the assembly structure of the roll, check whether the positioning device and shaft of the roll have locking failure and looseness out of control, and adjust the tightening in time before production.

Used welded pipe mills production line

 

Used welded pipe mills production line

 

(2) Uneven pressure on the upper roller.

When the pressure of the upper roller is not uniform, it can cause the upper flat roller to be tilted and biased, so that the gaps on both sides of the upper and lower rollers are different.

 

That is, when the deformation angle is less than 90°, the tube blank will be turned up to the side with lower pressure, as shown in Figure 10(a); when the deformation angle is greater than 90°, the tube blank will be turned up to the side with higher pressure, as shown in Figure 10 ( b). The tube blank in the closed hole pattern will also rotate in the direction of less pressure to control the direction of the tube seam. In this case, adjust the pressing amount of the flat roll, keep the upper roll in a horizontal position, and make auxiliary direction adjustment with the help of the front vertical roll of the flat roll.

 

Used welded pipe mills production line

(3)Bearing damage.

Whether the bearing of the upper or lower roll is damaged, the reduction of the upper roll will change, resulting in the deviation of the tube blank. The deviation of the deviation is exactly the same as the deviation caused by the uneven pressure. In production, we need to detect the abnormal rotation sound of the bearing, or whether the touch part is hot, we can judge the damage degree of the bearing, and replace it in time without blind adjustment.

 

(4)Insufficient pressure.

What we mean by insufficient pressure means that after the upper roller is pressed, there is still a large gap between the tube blank and the pass, and the pass cannot completely or well control the tube blank and the deviation occurs. Its performance is that the tube blank floats during operation, and swings up and down from left to right. If it is in the lead, the head of the tube blank will be upturned, which can be solved as long as the reduction amount is appropriately increased.

 

(5)Incorrect multi-pass hole type.

Incorrect multi-pass pass means that the center of two or more passes is not on the rolling line. When the tube blank deviates, a strange phenomenon often occurs during the adjustment. For example: When the tube blank is turned up to the outside, we will try to make it move inward according to the adjustment principle to overcome the problem of eversion. However, after the adjustment, the tube blank will suddenly turn inward when it continues to run, and sometimes the inward turning phenomenon will occur in the same direction at the back of the tube blank running. The conventional adjustment method cannot solve this problem. This is because the center of the multi-pass hole type is not correct. At this time, the tube blank is a twisting operation process in the forming machine (Fig. 11). For this deviation phenomenon, we should find the cause from the back of the tube blank, that is, find the problem from the first few passes of the forming machine, and make micro-adjustments and alignments one by one, so that the center of each pass is the same. When it can coincide with the rolling center, the deviation phenomenon can be fundamentally solved. This is the origin of the adjustment jargon that we often say is called "turning the back and adjusting the front".

 

Used welded pipe mills production line

(6) The center of the vertical roller is not correct.

The misalignment of the vertical roll center is also an important factor for the deviation of the tube blank after the flat roll comes out. The reason why this phenomenon is often overlooked is that the operation of the tube blank on the vertical roll is basically in a normal state, so in production, special attention should be paid to observe whether the tube blank is normal at the moment before it enters the flat roll after it comes out of the vertical roll. If the center of the vertical roller deviates, as long as we adjust the position of the vertical roller a little, we can control the best direction of the tube blank entering the flat roller, so that the deviation problem can be solved.

 

The reasons for the deviation of the common faults of the forming machine of the used welded pipe mills production line are mainly divided into the deviation of the flat roll and the deviation of the vertical roll. Today, we will introduce the analysis of the reasons for the deviation of the flat roll: ① The center of the hole is not correct.② The upper roll Uneven pressure.③Damage of pumping bearing ④Insufficient pressure.⑤Incorrect multi-pass hole type.⑥The center of the vertical roller is not correct.

关键词:

More News

Analyzing advantages and disadvantages of stainless steel electrolytic tube
Analyzing  advantages and disadvantages of stainless steel electrolytic tube
Analyzing  advantages and disadvantages of stainless steel electrolytic tube

Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.

Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.

Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analyzing  advantages and disadvantages of stainless steel electrolytic tube

Advantages of Stainless Steel Electrolytic Tubes:
1. Corrosion Resistance: Stainless steel electrolytic tubes have excellent resistance to corrosion, which makes them ideal for use in harsh environments, including acid and alkaline conditions.
2. Durability: They are highly durable and can withstand high temperatures and pressures, making them long-lasting and reliable.
3. Hygienic Properties: Stainless steel is easy to clean and maintain, making it suitable for applications that require strict hygiene standards, such as in the food and pharmaceutical industries.
4. Strength: These tubes have high mechanical strength and can endure significant amounts of stress without deforming.
5. Recyclability: Stainless steel is recyclable, which makes these tubes environmentally friendly.
6. Aesthetic Appeal: They have a shiny and attractive appearance, which is beneficial for applications where aesthetics are important.

Disadvantages of Stainless Steel Electrolytic Tubes:
1. Cost: Stainless steel electrolytic tubes are generally more expensive than tubes made from other materials.
2. Weight: They can be heavier compared to alternative materials like aluminum or plastic, which may be a disadvantage in some applications.
3. Work Hardening: Stainless steel has a tendency to work harden, which can make machining and forming operations more difficult.
4. Thermal Conductivity: Stainless steel has relatively low thermal conductivity compared to other metals like copper, which can be a limitation in certain applications requiring efficient heat transfer.

Overall, the selection of stainless steel electrolytic tubes depends on the specific requirements of the application, balancing their benefits with their drawbacks.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing of the workflow of a laser tube cutting machine
Analyzing of the workflow of a laser tube cutting machine
Analysis of the workflow of a laser tube cutting machine:

Workflow Analysis of a Laser Tube Cutting Machine

1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.

2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.

3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.

4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.

5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.

6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.

7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.

8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.

SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Analysis of the workflow of a laser tube cutting machine:

Workflow Analysis of a Laser Tube Cutting Machine

1.Loading Automated Loading: High-end laser tube cutting machines often feature automated loading systems that can handle multiple tubes at once, which increases efficiency.
Manual Loading: Some systems require manual loading, particularly in smaller or less automated setups.

2.Positioning Alignment: The tube is aligned and secured in place to ensure precise cutting. This can be achieved through mechanical clamps or automated systems that adjust the position based on pre-programmed parameters.
Initial Calibration: The machine checks the initial position of the tube using sensors and adjusts accordingly. This step ensures the accuracy of the cuts.

3.Cutting Laser Generation: The laser source generates a high-intensity beam focused on the tube.
Movement System: CNC (Computer Numerical Control) systems guide the laser along the programmed path to cut the tube according to the desired specifications.
Cooling: Cooling systems protect the laser and the workpiece from overheating during the cutting process.

4.Quality Monitoring Real-time Monitoring: Advanced machines use cameras and sensors to monitor the cutting process in real time, checking for defects and ensuring quality.
Feedback Loop: Errors detected are communicated back to the control system, which can make real-time adjustments to the cutting parameters.

5.Sorting and Unloading Automated Sorting: After cutting, sections of the tube are sorted automatically based on their size, shape, or another criterion.
Unloading: The finished pieces are then unloaded, either manually or using an automated system, and prepared for the next stage of processing or delivery.

6.Post-processing (if necessary)
Deburring: Some cut tubes might require deburring to remove sharp edges.
Cleaning: The workpieces could require cleaning to remove any residual material or dirt.

7. Inspection Dimensional Inspection: Quality control checks the dimensions of the cut pieces to ensure they match the required specifications.
Surface Inspection: The surface quality is also inspected to ensure there are no defects or damages that might affect the product's functionality or appearance.

8. Packaging and Shipping Packaging: The finished tubes are packaged to prevent damage during transportation.
Shipping: The packaged tubes are then prepared for shipping to the customer or for further processing.

SummaryThe laser tube cutting machine's workflow involves several steps that ensure precision, efficiency, and quality. From loading the raw tubes to cutting, monitoring, and final inspection, each stage is crucial for delivering a high-quality product. Automated systems enhance the speed and accuracy of these processes, making laser tube cutting an efficient method for manufacturing tubular components.

For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analyzing the energy consumption and operating costs of a laser tube cutting machine involves examining several key factors
Analyzing the energy consumption and operating costs of a laser tube cutting machine involves examining several key factors
4.Operational Time
Utilization Rate: How often and for how long the machine is operated directly impacts total energy consumption.
Idle Time: Machines may consume energy even when not actively cutting, depending on the design and standby modes.
5.Maintenance and Consumables
Lens and Mirrors: Regular maintenance and replacement of optical components are necessary, adding to operational costs.
Assist Gases: Gases like oxygen, nitrogen, or compressed air are used in the cutting process and add to operating expenses.
6.Labor Costs
Operational Efficiency: Skilled operators can optimize machine performance, reducing waste and downtime.
Automation: Automated systems may reduce labor costs but require initial investment and maintenance.
7.Capital Depreciation
Machine Depreciation: Over the machine’s lifespan, depreciation costs contribute to overall operating costs. Higher initial investment means higher depreciation.
These calculations can be adjusted based on actual usage, efficiency, and local energy prices.

ConclusionThe energy consumption and operating costs of a laser tube cutting machine depend on multiple factors, including the type of laser, machine efficiency, material being cut, operational time, and maintenance requirements. By optimizing each of these factors, it’s possible to manage and reduce the overall operating costs effectively.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
4.Operational Time
Utilization Rate: How often and for how long the machine is operated directly impacts total energy consumption.
Idle Time: Machines may consume energy even when not actively cutting, depending on the design and standby modes.
5.Maintenance and Consumables
Lens and Mirrors: Regular maintenance and replacement of optical components are necessary, adding to operational costs.
Assist Gases: Gases like oxygen, nitrogen, or compressed air are used in the cutting process and add to operating expenses.
6.Labor Costs
Operational Efficiency: Skilled operators can optimize machine performance, reducing waste and downtime.
Automation: Automated systems may reduce labor costs but require initial investment and maintenance.
7.Capital Depreciation
Machine Depreciation: Over the machine’s lifespan, depreciation costs contribute to overall operating costs. Higher initial investment means higher depreciation.
These calculations can be adjusted based on actual usage, efficiency, and local energy prices.

ConclusionThe energy consumption and operating costs of a laser tube cutting machine depend on multiple factors, including the type of laser, machine efficiency, material being cut, operational time, and maintenance requirements. By optimizing each of these factors, it’s possible to manage and reduce the overall operating costs effectively.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Analysis Laser tube cutting machines components
Analysis Laser tube cutting machines components
Laser tube cutting machines are intricate systems designed to cut metal tubes with high precision using laser technology:

1.Laser Source:This is the core component that generates the laser beam used for cutting. It can be of different types, such as CO2, fiber, or Nd:YAG lasers, each providing varying power levels and suitable for different materials and thicknesses.
2.Beam Delivery System: This system directs the laser beam from the laser source to the cutting head. It usually consists of mirrors and lenses ensuring the beam remains focused and consistent in power and quality.
3.Cutting Head:Includes a focusing lens, a nozzle, and sometimes a height sensor. The focusing lens concentrates the laser beam to a fine point for precise cutting. The nozzle directs assist gases (like oxygen or nitrogen) towards the cutting point, helping to clear molten material and enhance cutting quality.
4.Assist Gas System: Supplies gases (usually oxygen, nitrogen, or compressed air) required for the cutting process. Different gases are used based on the material being cut to achieve optimal cutting quality and speed.
5.Chuck and Rotary Axis: Holds and rotates the tube to position it accurately under the laser beam. These chucks can be adjusted to accommodate different tube sizes and shapes, ensuring secure and precise handling.
6.CNC Control System: The brain of the operation, this computer numerical control system runs the software that guides the laser cutting process. It handles the movement of the cutting head, the rotation of the chuck, and the application of assist gases per the programmed design.
7.Material Handling System: Includes loading and unloading mechanisms that manage the tubes before and after cutting. Automated systems can greatly enhance productivity by reducing manual intervention.
8.Cooling System: Maintains the temperature of the laser source and other critical components to ensure they operate efficiently and avoid overheating.
9.Exhaust and Filtration System: Removes fumes and particulates generated during the cutting process, ensuring a clean working environment and protecting sensitive components from contamination.
10.Safety Features: Includes protective barriers, interlock switches, and emergency stop buttons to ensure operator safety during machine operation.

Each of these components must function optimally and in harmony to achieve precise and efficient tube cutting with minimal wastage and high-quality outputs.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Detail
Laser tube cutting machines are intricate systems designed to cut metal tubes with high precision using laser technology:

1.Laser Source:This is the core component that generates the laser beam used for cutting. It can be of different types, such as CO2, fiber, or Nd:YAG lasers, each providing varying power levels and suitable for different materials and thicknesses.
2.Beam Delivery System: This system directs the laser beam from the laser source to the cutting head. It usually consists of mirrors and lenses ensuring the beam remains focused and consistent in power and quality.
3.Cutting Head:Includes a focusing lens, a nozzle, and sometimes a height sensor. The focusing lens concentrates the laser beam to a fine point for precise cutting. The nozzle directs assist gases (like oxygen or nitrogen) towards the cutting point, helping to clear molten material and enhance cutting quality.
4.Assist Gas System: Supplies gases (usually oxygen, nitrogen, or compressed air) required for the cutting process. Different gases are used based on the material being cut to achieve optimal cutting quality and speed.
5.Chuck and Rotary Axis: Holds and rotates the tube to position it accurately under the laser beam. These chucks can be adjusted to accommodate different tube sizes and shapes, ensuring secure and precise handling.
6.CNC Control System: The brain of the operation, this computer numerical control system runs the software that guides the laser cutting process. It handles the movement of the cutting head, the rotation of the chuck, and the application of assist gases per the programmed design.
7.Material Handling System: Includes loading and unloading mechanisms that manage the tubes before and after cutting. Automated systems can greatly enhance productivity by reducing manual intervention.
8.Cooling System: Maintains the temperature of the laser source and other critical components to ensure they operate efficiently and avoid overheating.
9.Exhaust and Filtration System: Removes fumes and particulates generated during the cutting process, ensuring a clean working environment and protecting sensitive components from contamination.
10.Safety Features: Includes protective barriers, interlock switches, and emergency stop buttons to ensure operator safety during machine operation.

Each of these components must function optimally and in harmony to achieve precise and efficient tube cutting with minimal wastage and high-quality outputs.
For more information, please pay attention to the website of Jinyujie Mechanical and Electrical Used Pipe Mill Supplier:www.usedpipemill.com

JinYuJie-Used Pipe Mills Supplier(Please click the link→) :second-hand pipe mill
Contact information
Tel: +86-13392281699
Wechat: 13392281699
Email: zty@usedpipemill.com
Company address:No. A99, East Lecong Avenue, Lecong Town, Foshan City, Guangdong Province

Recommendation

Online Inquiry

留言应用名称:
底部留言
描述:

LINK

Contact Us

Tel (wechat): 13336487288
Wechat:+86 13336487288

WhatsApp:+86 13336487288
Email: zty@usedpipemill.com

Address: No. A99, Lecong Avenue East, Lecong Town, Foshan City, Guangdong Province

QRCODE

Copyright 0 2021 jinyujie. 粤ICP备13051810号 Powerby:  300.cn